

BACHELOR OF ENGINEERING SCHEME & SYLLABUS I & II SEMESTERS 2025-26

VISION

PROMOTING PROSPERITY OF MANKIND BY AUGMENTINGHUMAN RESOURCE CAPITAL THROUGH QUALITY TECHNICAL EDUCATION &TRAINING

MISSION

ACCOMPLISH EXCELLENCE IN THE FIELD OF TECHNICAL EDUCATION THROUGH EDUCATION, RESEARCH AND SERVICE NEEDS OF SOCIETY

Content

Sl. No.	Course Code	Course title	Page No
1	25MA1BSMCS	Mathematical foundation for Computer Science Stream-1	1
2	2 25MA1BSCEM Mathematical Foundation for Civil, Electrical and Mechanical Engineering stream— 1		4
3	25PH1BSPCS /25PH2BSPCS	Quantum Physics and Computation for Computer Science Engineering Stream	7
4	25PH1BSPEC / 25PH2BSPEC	Quantum Physics and Sensors for Electronics Engineering	13
5	25PH1BSPEE	Physics of Materials for Electrical Engineering	19
6	25PH1BSPCV	Physics of Structural Systems for Civil Engineering	24
7	25PH2BSPME	Physics of Materials for Mechanical Engineering Stream	29
8	25ME1ESCED /25ME2ESCED	Computer-Aided Engineering Drawing	34
9	25CV1ESBSM /25CV2ESBSM	Building Science and Mechanics	38
10	25EE1ESIEE/ 25EE2ESIEE	Introduction to Electrical Engineering	42
11	25EC1ESIEL/ 25EC2ESIEL	Introduction to Electronics & Communication Engineering	46
12	25ME1ESIME/ 25ME2ESIME	Introduction to Mechanical Engineering	50
13	25CS1ESEIT/ 25CS1ESEIT	Essentials of Information Technology	53
14	25CV1PSENM	Engineering Mechanics	56
15	25EE1PSBEE	Basics of Electrical Engineering	60
16	25EC1PSECE/ 25EC2PSECE	Fundamentals of Electronics & Communication Engineering	65
17	25CS1PSSPC /25CS2PSSPC	Structured Programming in C	70
18	25BT1PSEBB	Elements of Biotechnology and Biomimetics	75
19	25MA1HSSSK/ 25MA2HSSSK	Soft Skills	81
20	25ME1AEIDT/ 25ME2AEIDT	Innovation and Design Thinking	86

21	25MA1HSBAK/ 25MA2HSBAK	Balake Kannada	89
22	25MA1HSSAK/ 25MA2HSSAK	Samskrutika Kannada	91
23	25CY1BSCCS/ 25CY2BSCCS	Applied Chemistry for Smart Systems	93
24	25CY1BSCEE/ 25CY2BSCEE	Applied Chemistry for Emerging Electronics and Futuristic Devices	98
25	25CY1BSCME	Applied Chemistry for Advanced Metal Protection and Sustainable Energy Systems	103
26	25CH2BSCCV	Applied Chemistry for Sustainable Structures & Material Design	108
27	25CS1ETIAA/ 25CS2ETIAA	Introduction to AI Applications	113
28	25CS1ESICP/ 25CS2ESICP	Introduction to C Program	120
29	25CS1ESIPP/ 25CS1ESIPP	Introduction to PYTHON Programming	124
30	25MA1AECEN/ 25MA2AECEN	English Communication Skills	127
31	25MA1HSICE/ 25MA2HSICE	Indian Constitution & Engineering Ethics	132
32	25ME1AEIDL/ 25ME1AEIDL	IDEA Lab (Multidisciplinary)	135
33	25MA2BSMCS	Applied Mathematics-II for CSE Stream	137
34	25MA2BSCEM	Mathematical Foundation for Civil, Electrical and Mechanical Streams - 2	140
35	25CH2PSCHE	Elements of Chemical Engineering	143
36	25ME2PSEME	Elements of Mechanical Engineering	148

$Scheme \,\&\, Syllabus\, for\, UG\, Program \,\hbox{--}\, I \,\&\, II\, Semesters\, ABBREVIATIONS$

AY	Academic Year			
AAT	Alternative Assessment Tools			
ВОЕ	Board of Examiners			
BOS	Board of Studies			
CBCS	Choice Based Credit System			
CGPA	Cumulative Grade Point Averages			
CIE	Continuous Internal Evaluation			
HS	Humanity and Social Science Courses			
L-T-P-S	Lecture-Tutorial- Practical-Self study			
NFTE	Not Fit for Technical Education			
SEE	Semester End Examination			
SGPA	Semester Grade Point Average			
BS	Basic Science			
NC	No Credit			
PP	Pass in Non-Credit Course			

<u>Scheme of Instruction for First Semester B.E. 2025 – 26 (PHYSICS CYCLE)</u>

Sl.	Sl. No. Cours Type		Course Code	Course Title	L	T	P	Total credits
1.			25MA1BSMCS	Mathematical foundation for Computer Science Stream– 1				
2.	1	ASC1	25MA1BSCEM	Mathematical Foundation for Civil, Electrical and Mechanical Engineering stream— 1	3	2	0	4
3.			25PH1BSPCS	Quantum Physics and Computation for Computer Science Engineering Stream				
4.	2	ASC2	25PH1BSPEC	Quantum Physics and Sensors for Electronics Engineering	3	0	2	4
5.			25PH1BSPEE	Physics of Materials for Electrical Engineering				
6.			25PH1BSPCV	Physics of Structural Systems for Civil Engineering				
7.	3	ESC	25ME1ESCED	Computer-Aided Engineering Drawing	1	0	4	3
8.			25CV1ESBSM	Building Science and Mechanics				
9.			25EE1ESIEE	Introduction to Electrical Engineering				
10.	4	ESC-I	25EC1ESIEL	Introduction to Electronics & Communication Engineering	3	0	0	3
11.			25ME1ESIME	Introduction to Mechanical Engineering				
12.			25CS1ESEIT	Essentials of Information Technology				
13.			25CV1PSENM	Engineering Mechanics				
14.			25EE1PSBEE	Basics of Electrical Engineering				
15.	5	PSC	25EC1PSECE	Fundamentals of Electronics & Communication Engineering	3	0	2	4
16.			25CS1PSSPC	Structured Programming in C				
17.			25BT1PSEBB	Elements of Biotechnology and Biomimetics				
18.	6	NCMC	25MA1HSSSK	Soft Skills		0	0	PP
19.	7	SDC	25ME1AEIDT	Innovation and Design Thinking	1	0	0	1
20.	8	HSMC	25MA1HSBAK Balake Kannada		1	0	0	1
21.	21. 25MATHSSAK Samskrutika Kannada		Ĺ	J				
	Total						2	0

Scheme of Instruction for First Semester B.E. 2025-26 (CHEMISTRY CYCLE)

Sl. I	No.	Course Type	Course Code	Course Title	LT		P	Total credits														
1.			25MA1BSMCS	Applied Mathematics-1 for CSE Stream-1																		
2.	1	ASC1	ASC1 25MA1BSCEM Mathematical Foundation for Civil, Electrical and Mechanical Streams - 1		3	2	0	4														
3.			25CY1BSCCS	Applied Chemistry for Smart Systems																		
4.	2	ASC2	25CY1BSCEE	Applied Chemistry for Emerging Electronics and Futuristic Devices	3	0	2	4														
5.		25CY1BSCME Applied Metal Pr		Applied Chemistry for Advanced Metal Protection and Sustainable Energy Systems																		
6.	3	ETC	25CS1ETIAA	Introduction to AI Applications	3	0	0	3														
7.			25CV1ESBSM	Building Science and Mechanics																		
8.		ESC1	ESC1	25EE1ESIEE	Introduction to Electrical Engineering																	
9.	4			ESC1	ESC1	ESC1	ESC1	ESC1	ESC1	ESC1	ESC1	ESC1	ESC1	ESC1	ESC1	ESC1	25EC1ESIEL	Introduction to Electronics & Communication Engineering	3	0	0	3
10.									25ME1ESIME	Introduction to Mechanical Engineering												
11.			25CS1ESEIT	Essentials of Information Technology																		
12.	5	DI CIICI	25CS1ESICP	Introduction to C Program	3	0	2	4														
13.	3	PLC[IC]	25CS1ESIPP	Introduction to PYTHON Programming	3		<i></i>	4														
14.	6	AEC	25MA1AECEN	English Communication Skills		0	0	1														
15.	7	NCMC	25MA1HSICE	Indian Constitution & Engineering Ethics		0	0	1														
16.	8	SDC	25ME1AEIDL IDEA Lab (Multidisciplinary)		0	0	2	1														
	Total							20														

Scheme of Instruction for Second Semester B.E. 2025-26 (PHYSICS CYCLE)

Sl.	No.	Course Type	Course Code	Course Title	L	Т	P	Total credits	
1.			25MA2BSMCS	Applied Mathematics-II for CSE Stream					
2.	1	ASC2	ASC2 25MA2BSCEM Mathematical Foundation for Civil, Electrical and Mechanical Streams - 2		3	2	0	4	
3.			25PH2BSPCS	Quantum Physics and Computation for Computer Science Engineering Stream					
4.	2	ASC2	25PH2BSPEC	Quantum Physics and Sensors for Electronics Engineering	3	0	2	4	
5.			25PH2BSPME	Physics of Materials for Mechanical Engineering Stream					
6.		ESC-2	25ME1ESCED	Computer-Aided Engineering Drawing	1	0	4	3	
7.			25CV1ESBSM	Building Science and Mechanics					
8.			25EE1ESIEE	Introduction to Electrical Engineering					
9.	4	ESC2-II	ESC2-II	25EC1ESIEL	Introduction to Electronics & Communication Engineering	3	0	0	3
10.			25ME1ESIME	Introduction to Mechanical Engineering					
11.			25CS1ESEIT	Essentials of Information Technology					
12.			25ME2PSEME	Elements of Mechanical Engineering					
13.	5	PSC2	25EC2PSECE	Fundamentals of Electronics & Communication Engineering	3	0	2	4	
14.)	rsc2	25CS2PSSPC	Structured Programming in C	3		<i>L</i>	4	
15.			25CH2PSCHE	Elements of Chemical Engineering					
16.	6	NCMC2	25MA2HSSSK	Soft Skills	1	0	0	PP	
17.	6	SDC2	25ME2AEIDT	Innovation and Design Thinking	1	0	0	1	
18.				Balake Kannada	1	0	0	1	
19.	7	HSMC	HSMC 25MA2HSSAK Samskrutika Kannada		1	0	0	1	
			Total		_			20	

Scheme of Instruction for Second Semester B.E. 2024-25 (CHEMISTRY CYCLE)

SI No	-	Course Type	Course Code	Course Title		Т	P	Total credits
1.			25MA2BSMCS	Applied Mathematics-II for CSE Stream				
2.	1	ASC1	25MA2BSCEM	Mathematical Foundation for Civil, Electrical and Mechanical Streams - 2	3	2	0	4
3.			25CH2BSCCS	Applied Chemistry for Smart Systems				
4.	2	ASC2	25CH2BSCEE	Applied Chemistry for Emerging Electronics and Futuristic Devices	3	0	2	4
5.			25CH2BSCCV	Applied Chemistry for Sustainable Structures & Material Design				
6.	3	ETC2	25CS2ETIAA	Introduction to Al Applications		0	0	3
7.			25CV2ESBSM	Building Science and Mechanics				
8.			25EE2ESIEE	Introduction to Electrical Engineering				
9.	4	ESC2-II	25EC2ESIEL	Introduction to Electronics & Communication Engineering	3	0	0	3
10.			25ME2ESIME	Introduction to Mechanical Engineering				
11.			25CS2ESEIT	Essentials of Information Technology				
12.			25CS2ESICP	Introduction to C Program				
13.	5	PLC[IC]2	25CS2ESIPP	Introduction to PYTHON Programming	3	0	2	4
14.	6	AEC2	25MA2AECEN	English Communication Skills	1	0	0	1
15.	7	NCMC2	25MA2HSICE	Indian Constitution & Engineering Ethics	1	0	0	PP
16.	16. 8 SDC2 25ME2AEIDL IDEA Lab (Multidisciplinary)		1	0	0	1		
	Total							20

	Course Type Abbreviations
L-Lecture	(1 credit=1 contact hr.)
T -Tutorial	(1 credit=2 contact hrs.)
P -Practical	(1 credit=2 contact hrs.)
ASC	Applied Science Course
ESC	Engineering Science Course
PSC	Programme Specific Courses with Lab
AEC	Ability Enhancement
SDC	Skill Development Course
PLC	Programming Language Course
ETC	Emerging Technology Course
NCMC	Non-Credit Mandatory Course
HSMC	Humanities Course

Course Title: Mathematical Foundation 1	n for Computer Science Stream -	Semester	I
Course Code	25MA1BSMCS	CIE Marks	50
Teaching Hours/Week (L:T:P: S)	3-1-0	SEE Marks	50
Total Hours of Pedagogy		Total Marks	100
Credits	04	Exam Hours	3
Examination type (SEE)		<u> </u>	

Course Outcomes (Course Skill Set)

After completing the course successfully, students will be able to:

- **CO 1:** Apply the concepts of Calculus and Matrix theory in solving problems.
- CO 2: Relate the importance of Calculus and Matrix theory in computer science stream
- **CO 3:** Demonstrate the understanding of Calculus and Matrix theory through programming skills using modern tool.

Module-1: Matrices and System of Linear Equations

10 Hours

Prerequisites: Operations on matrices and determinants. Elementary row transformation of a matrix

Echelon form, rank of a matrix, consistency and solution of system of linear equations - Gauss-elimination method, approximate solution by Gauss-Seidel method. Eigenvalues and eigenvectors, Rayleigh's power method to find the dominant eigenvalue and eigenvector.

Applications: Balancing chemical equations, Traffic flow.

Self-Study: Solution of a system of linear equations by Gauss-Jacobi iterative method. Inverse of a

square matrix by Cayley- Hamilton theorem

Module-2: Multivariable Calculus

10 Hours

Prerequisites: Calculus of one variable

Partial differentiation, total derivatives - differentiation of composite functions, Jacobian, Taylor's and Maclaurin's series expansion for two variables (statement only) – problems.

Applications: Maxima and minima for a function of two variables.

Self-study: Indeterminate forms-L'Hospital's rule, Euler's theorem and problems. Method of

Lagrange's undetermined multipliers with single constraint.

Module-3: Vector Calculus

10 Hours

Prerequisites: Scalars, vectors and its operations, multivariable calculus, basic integration.

Scalar and vector fields. Gradient, divergence and curl – physical interpretation, solenoidal vector fields, irrotational vector fields.

Curvilinear coordinates: Scale factors, base vectors, Cylindrical polar coordinates, Spherical polar coordinates, transformation between cartesian and curvilinear systems, orthogonality. **Applications:** Directional derivatives and scalar potential.

Self – study: Expression for gradient, divergence and curl in curvilinear systems.

Module-4: Ordinary Differential Equations (ODEs) of First Order

09 Hours

Prerequisites: Basic integration, linear ODE, solution by separation of variables

Bernoulli's differential equations. Exact and reducible to exact differential equations- Integrating

factors on
$$\frac{1}{N} \left(\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x} \right)$$
 and $\frac{1}{M} \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right)$.

Applications: Orthogonal trajectories, Newton's law of cooling.

Self-Study: Nonlinear differential equations - Introduction to general and singular solutions, solvable for p, for x and y. Clairaut's equations.

Module-5: Ordinary Differential Equations of Higher Order

09 Hours

Prerequisites: Roots of a polynomial

Higher-order linear ordinary differential equations with constant coefficients - Inverse differential operator, method of variation of parameters, Cauchy's and Legendre's differential equations.

Applications: Solution of differential equation in fundamental forms (homogeneous equations).

Self-Study: Method of undetermined coefficients

Suggested Learning Resources: (Textbook/Reference Book):

I. Textbooks:

- **1. B. S. Grewal**: "Higher Engineering Mathematics", Khanna publishers, 45th Ed., 2024
- **2. E. Kreyszig**: "Advanced Engineering Mathematics", John Wiley & Sons, 10th Ed., 2018.
- **3. D. C. Lay:** "Linear Algebra and its Applications", Pearson Publishers, 5th Ed., 2024.

II. Reference books:

- **1. B. V. Ramana:** "Higher Engineering Mathematics" McGraw-Hill Education, 11th Ed., 2017
- **2. S. Pal and S. C. Bhunia**: "Engineering Mathematics" Oxford University Press, 3rd Ed., 2016.
- **3. N. P. Bali and M. Goyal**: "A textbook of Engineering Mathematics" Laxmi Publications, 10th Ed., 2022.
- **4. H. K. Dass and Er. Rajnish Verma:** "Higher Engineering Mathematics" S. Chand Publication, 3rd Ed., 2014.
- **5. J. Stewart:** "Calculus" Cengage Publications, 7th Ed., 2019.
- **6. G. Williams:** "Linear Algebra with applications", Jones Bartlett Publishers Inc., 6th Ed., 2017.
- 7. D.G. Zill and W.S.Wright: "Advanced Engineering Mathematics", Jones

Bartlett Publishers Inc., 7th Ed., 2020

III. Web links and Video Lectures (e-Resources):

- 1. http://academicearth.org/
- 2. VTU e-Shikshana Program
- 3. VTU EDUSAT Program
- 4. https://nptel.ac.in/courses/111106135
- 5. https://nptel.ac.in/courses/111105160
- 6. https://ocw.mit.edu/courses/18-06-linear-algebra-spring-2010/
- 7. https://ocw.mit.edu/courses/18-02sc-multivariable-calculus-fall-2010/
- 8. Vector Calculus: https://www.classcentral.com/course/vector-calculus-engineers-17387

Teaching-Learning Process (Innovative Delivery Methods):

1. Chalk and talk method / Power Point Presentation

Assessment Structure:

Component	Type of assessment	Max. Marks	Total	50 % Weightage	Total
CIE – Theory	Quiz	10		5	50
	AAT	10	100	5	
	Test 1	40	100	20	
incory	Test 2	40		20	
	Test 3	40		20	
SEE	End Exam	100		50	

- 1. CIE methods /question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.
- 2. The best two scores out of three tests will be considered for CIE

Semester End Examination:

- 1. Two complete questions will be given from each unit.
- 2. One complete question from each unit to be answered.

Course Title: Mathematical For Mechanica	Semester	Ι	
Course Code	25MA1BSCEM	CIE Marks	50
Teaching Hours/Week (L:T:P: S)	3-1-0	SEE Marks	50
Total Hours of Pedagogy		Total Marks	100
Credits	04	Exam Hours	3
Examination type (SEE)		•	

Course Outcomes (Course Skill Set)

After completing the course successfully, students will be able to:

- CO 1: Apply the concepts of Calculus and Matrix theory in solving problems
- **CO 2:** Relate the importance of Calculus and Matrix theory concepts to Civil, Electrical & Mechanical Streams
- **CO 3:** Demonstrate the understanding of Calculus and Matrix theory concepts through programming skills using modern tool

Module-1: Matrices and System of equations

10 Hours

Pre-requisites: Operations on matrices and determinants, elementary row transformations of a matrix

Echelon form, rank, consistency and solution of system of linear equations - Gauss-elimination method, approximate solution by Gauss-Seidel method. Eigenvalues and eigenvectors, Rayleigh's power method to find the dominant eigenvalue and eigenvector.

Applications: Balancing chemical equations, Traffic flow.

Self-Study: Solution of a system of linear equations by Gauss-Jacobi iterative method. Inverse of a square matrix by Cayley- Hamilton theorem

Module-2: Calculus of One Variable

10 Hours

Pre-requisites: Trigonometric functions and identities, differentiation and its rules.

Introduction to polar coordinates, polar curves, angle between radius vector and tangent, angle between two curves. Length of perpendicular from pole to the tangent, pedal equations.

Applications: Curvature and Radius of curvature – cartesian and polar forms.

Self-study: Taylor's and Maclaurin's series expansion for one variable, radius of curvature in parametric form.

Module-3: Multivariable Calculus

10 Hours

Pre-requisites: Higher-order derivatives, chain rule and determinants

Partial differentiation, total derivatives - differentiation of composite functions, Jacobian, Taylor's and Maclaurin's series expansion for two variables (statement only) – problems.

Applications: Maxima and minima for a function of two variables.

Self-study: Indeterminate forms-L'Hospital's rule, Euler's theorem and problems. Method of

Lagrange's undetermined multipliers with single constraint. Errors and approximations

Module-4: Ordinary Differential Equations (ODEs) of First Order

09 Hours

Pre-requisites: Basic integration, linear ODE, solution by separation of variables.

Bernoulli's differential equations. Exact and reducible to exact differential equations- Integrating

factors on
$$\frac{1}{N} \left(\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x} \right)$$
 and $\frac{1}{M} \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right)$.

Applications: Orthogonal trajectories, Newton's law of cooling.

Self-Study: Nonlinear differential equations - Introduction to general and singular solutions,

solvable for p, for x and y. Clairaut's equations

Module-5: Ordinary Differential Equations of Higher Order

09 Hours

Pre-requisites: Roots of a polynomial

Higher-order linear ordinary differential equations with constant coefficients - Inverse differential operator, method of variation of parameters, Cauchy's and Legendre's differential equations.

Applications: Spring-Mass system and L-R-C series circuits

Self-Study: Method of undetermined coefficients

Suggested Learning Resources: (Textbook/Reference Book):

I. Textbooks:

- 1. **B. S. Grewal**: "Higher Engineering Mathematics", Khanna publishers, 45th Ed., 2024
- 2. **E. Kreyszig**: "Advanced Engineering Mathematics", John Wiley & Sons, 10th Ed., 2018.
- 3. **D. C. Lay:** "Linear Algebra and its Applications", Pearson Publishers, 5th Ed., 2024

II. Reference books:

- 1. **B.V. Ramana:** "Higher Engineering Mathematics", McGraw-Hill Education, 11th Ed., 2017
- 2. **S. Pal and S. C. Bhunia**: "Engineering Mathematics", Oxford University Press, 3rd Ed., 2016.
- 3. **N. P. Bali and M. Goyal**: "A textbook of Engineering Mathematics", Laxmi Publications, 10th Ed., 2022.
- 4. **H. K. Dass and Er. R. Verma:** "Higher Engineering Mathematics", S. Chand Publication, 3rd Ed., 2014
- 5. **J. Stewart: "**Calculus", Cengage Publications, 7th Ed., 2019.
- 6. **G. Williams:** "Linear Algebra with applications", Jones Bartlett Publishers Inc., 6th Ed., 2017.
- 7. **D.G. Zill and W.S.Wright:** "Advanced Engineering Mathematics", Jones Bartlett Publishers Inc., 7th Ed., 2020

III. Web links and Video Lectures (e-Resources):

- 1. http://academicearth.org/
- 2. VTU e-Shikshana Program
- 3. VTU EDUSAT Program
- 4. https://nptel.ac.in/courses/111106135
- 5. https://nptel.ac.in/courses/111105160
- 6. https://ocw.mit.edu/courses/18-06-linear-algebra-spring-2010/
- 7. https://ocw.mit.edu/courses/18-02sc-multivariable-calculus-fall-2010/

Teaching-Learning Process (Innovative Delivery Methods):

1. Chalk and talk method / Power Point Presentation

Assessment Structure:

Component	Type of assessment	Max. Marks	Total	50 % Weightage	Total
CIE – Theory	Quiz	10		5	
	AAT	10	100	5	
	Test 1	40	100	20	50
Theory	Test 2	40		20	
	Test 3	40		20	
SEE	End Exam	100	50		

- 1. CIE methods /question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.
- 2. The best two scores out of three tests will be considered for CIE.

Semester End Examination:

- 1. Two complete questions will be given from each unit.
- 2. One complete question from each unit to be answered

Course Title: Quantum Physics an	nd Computation For Computer	Semester	I/II
Science Enginee	ering Stream		
Course Code	25PH1BSPCS / 25PH2BSPCS	CIE Marks	50
Teaching Hours/Week (L:T:P: S)	3:0:2	SEE Marks	50
Total Hours of Pedagogy	40	Total Marks	100
Credits	04	Exam Hours	03
Examination type (SEE)			

Course Outcomes (Course Skill Set)

CO1: Understand and Apply the principles of quantum mechanics, quantum computing, transport phenomena in metals, semiconducting and superconducting materials, construction and working principle of LASERs and optical fibers.

CO2: Use appropriate Tools to develop the concept of physics, perform as a member of team to design a model and make an oral presentation.

CO3: Conduct, Analyze and Interpret the data and results from Physics experiments.

Module-1: QUANTUM MECHANICS

8 Hours

de-Broglie hypothesis – derivation by analogy. Definition of phase velocity and group velocity. Relation between group velocity and phase velocity, relation between group velocity and particle velocity, relation between group velocity, phase velocity and velocity of light (qualitative). Heisenberg's uncertainty principle – statement and physical significance. Application of uncertainty principle – non-existence of electron in the nucleus.

Wave function-properties, physical significance. Born Interpretation, expectation value, and its physical significance. Probability density and normalization of wave function. Setting up of one-dimensional time independent Schrödinger's wave equation. Particle in a one-dimensional potential well of infinite height and finite width (particle in a box) - Eigen functions, probability density and Eigen values for the first two states. Problems.

Self-study: Ehrenfest theorem, Quantum dots

Module-2: Electrical Properties Of Metals And Semiconductors

8 Hours

Introduction to classical free electron theory and its failures. Mechanisms of electron scattering in solids, Matheissen's rule. Assumptions of Quantum Free Electron Theory, density of states (qualitative), Fermi energy, expression for Fermi energy (qualitative), Fermi velocity, Fermi temperature. Fermi factor, variation of Fermi factor with temperature and energy. Merits of quantum free electron theory.

Introduction to Semiconductors, expression for concentration of electrons in conduction band, expression for hole-concentration in valance band (qualitative). Expression for intrinsic carrier concentration. Fermi level for intrinsic (derivation) and extrinsic semiconductor (qualitative), expression for electrical conductivity of semiconductors and energy band gap. Hall effect, expressions for Hall voltage, Hall coefficient, and its applications. Problems.

Self-study: Semiconductors in electronics applications

Module-3: Superconductivity

8 Hours

Introduction to superconductors – Zero resistance state, temperature dependence of resistivity, persistent current, three critical parameters - critical temperature, critical magnetic field and critical current: Silsbee effect. Derivation of critical current for a cylindrical wire using ampere's law. Meissner effect. Type-I and Type-II superconductors. Formation of vortices.

BCS Theory - two-fluid model, formation of Cooper pairs, phase coherent state. Limitations of BCS theory, examples of systems with low and high electron-phonon coupling. Cooper pair tunneling (Andreev reflection). Josephson junction, flux quantization, DC and AC SQUIDs (qualitative), MAGLEV vehicle. Problems.

Self-study: Principle and working of MRI

Module-4: Photonics 8 Hours

LASERs: Introduction, characteristics of LASERs. Interaction of radiation with matter – Einstein's A and B coefficients. Expression for energy density of a system under thermal equilibrium in terms of Einstein's A and B coefficients. Conditions for Laser action. Requisites of a LASER system. Construction and working of He-Ne LASER. Applications of LASERs: Mach-Zehnder interferometer.

Optical Fiber: Introduction, principle of propagation, angle of acceptance, and numerical aperture. Expression for numerical aperture and condition for propagation. Number of modes: V-number. Classification of optical fibers. Attenuation- attenuation coefficient (qualitative), causes of attenuation. Applications of optical fibers: fiber optic displacement sensor and fiber optic temperature sensor. Problems.

Self-study: Various applications of LASERs

Module-5: QUANTUM COMPUTATION

8 Hours

Introduction, Moore's law - limitation of VLSI. Difference between classical and quantum computation. Bit, Qubit and its properties. Bloch sphere (qualitative).

Dirac Notation: Matrix form of wave function, identity operator (I), determination of $I|0\rangle$ and $I|1\rangle$, Pauli matrices and its operations on $|0\rangle$ and $|1\rangle$ states. Mention of conjugate, transpose and unitary matrix. Inner product of 2x2 matrices. Probability and orthogonality.

Quantum Gates: Single qubit gates: quantum NOT gate, Pauli Z gate, Hadamard gate, Phase gate (or S Gate), T gate.

Multiple Qubit Gates: Controlled gate - CNOT Gate, (discussion of 4 different input states). Representation of swap gate, controlled - Z gate, Toffoli gate. Problems.

Self-study: Quantum Entanglement, quantum teleportation and quantum computers

Suggested Learning Resources:

I. Text books:

- 1. Engineering Physics, Satyendra Sharma and Jyotsna Sharma, Pearson, 2018.
- 2. Engineering Physics, S L Kakani, Shubra Kakani, 3rd Edition, 2020, CBS Publishers and Distributers Pvt. Ltd., 2018.
- 3. Solid State Physics, S. O. Pillai, New Age International, 2022.
- 4. Quantum Computing, Parag K Lala, McGraw Hill, 2020.

II. Reference books / Manuals:

- 1. Beiser, A. (2002). Concepts of Modern Physics (6th ed.). McGraw-Hill Education.
- 2. Griffiths, D. J. (2018). Introduction to Quantum Mechanics (2nd or 3rd ed.). Pearson.
- 3. Tinkham, M. (2004). Introduction to Superconductivity (2nd ed.). Dover Publications.
- 4. Mishra, P. K. (2009). Superconductivity Basics and Applications. Ane Books.
- 5. LASERS and Non-Linear Optics, B B Loud, New Age International.
- 6. Saleh, B. E. A., & Teich, M. C. (2019). Fundamentals of Photonics (3rd edition) Wiley.
- 7. Nielsen, M. A., & Chuang, I. L. (2010). Quantum Computation and Quantum Information (10th Anniversary ed.). Cambridge University Press.
- 8. Vishal Sahani, Quantum Computing, McGraw Hill Education, 2007 Edition.
- 9. Introduction to Superconductivity, Michael Tinkham, McGraww Hill, INC, II Edition.

III. Web links and Video Lectures (e-Resources):

- 1. NPTEL Quantum Mechanics I (IIT Madras): https://nptel.ac.in/courses/115106066
- 2. NPTEL Physics: Introductory Quantum Mechanics (NOC): https://archive.nptel.ac.in/courses/115/104/115104096
- 3. Solid State Physics NPTEL (IIT Madras) https://nptel.ac.in/courses/115106127
- 4. A Brief Course on Superconductivity NPTEL IIT Guwahati (Prof. Saurabh Basu)
- 5. Playlist Introduction Video: https://www.youtube.com/watch?v=SHoGV-sezNI
- 6. Full playlist available via the YouTube channel description or archive link.
- 7. Concepts in Magnetism and Superconductivity NOC (IIT Kharagpur) Series start (Lecture 1): https://digimat.in/nptel/courses/video/115105131/L01.html
- 8. Introduction to Photonics NPTEL (IIT Madras, Prof. Balaji Srinivasan) Lecture 03 to Lecture 12 cover: Direct video link (start Lecture 03): https://nptel.ac.in/courses/108106135/03
- 9. Semiconductor Optoelectronics NPTEL (IIT Delhi, Prof. M. R. Shenoy) Direct video link (start relevantlecture): https://nptel.ac.in/courses/108108174/05
- 10. 10. Lecture 04 Quantum Computing Basics: https://www.youtube.com/watch?v=-fttE1SzpD8

11. Lecture 08 – Quantum Gates and Circuits Part 1: https://www.youtube.com/watch?v=nGPr1QM_XrY

12. Virtual LAB: https://www.vlab.co.in/participating-institute-amrita-vishwa-vidyapeetham

13. **Virtual LAB:** https://vlab.amrita.edu/index.php?sub=1&brch=189&sim=343&cnt=1

Activity-Based Learning/Practical-Based Learning:

- 1. http://nptel.ac.in
- 2. https://swayam.gov.in
- 3. https://virtuallabs.merlot.org/vl_physics.html
- 4. https://phet.colorado.edu
- 5. https://www.myphysicslab.com

Teaching-Learning Process (Innovative Delivery Methods):

- 1. Chalk and Talk
- 2. Blended Mode of Learning
- 3. Simulations, Interactive Simulations and Animations
- 4. NPTEL and Other Videos for theory topics
- 5. Smart Class Room
- 6. Flipped Class
- 7. Lab Experiment Videos

Assessment Structure:

Component	Type of assessment	Max. Marks	ax. Marks Reduced to		Total Marks				
CIE – Theory	CCA	10	05						
	Test 1	40	10	50	50				
	Test 2	40	10	50	50				
CIE – Lab	Test	50	25						
SEE	Semester End Exam	100	5	0	50				
Grand Total M	Grand Total Marks								

Course objectives:

- 1. To impart the knowledge of concept and applications of quantum mechanics and quantum computation
- 2. To provide insight to the electrical properties of metals, semiconductors, and superconductors, and

their engineering applications

3. To understand the principles of LASERs and optical fibers, and explore their practical implications

CO-PO mapping with strength:

COs						POs					
	1	2	3	4	5	6	7	8	9	10	11
CO1	3	2									
CO2					1				1	1	
CO3				3							

List of Lab activities:

- 1. Wavelength of LASER by diffraction
- 2. Divergence angle of a LASER
- 3. Numerical aperture of an optical fiber
- 4. Wavelength of LEDs/Planck's constant
- 5. Fermi energy of copper
- 6. Dielectric constant of a material by charging and discharging of a capacitor
- 7. Energy gap of a semiconductor using four probe method
- 8. V-I characteristics of a photodiode
- 9. Frequency response of series and parallel LCR circuits
- 10. Black box
- 11. Attenuation coefficient of OFC
- 12. GNU step interactive simulations
- 13. Study of motion using spread sheet
- 14. PHET Interactive Simulations

(https://phet.colorado.edu/en/simulations/filter?subjects=physics&type=html, prototype)

15. Quantum Experiments using Qiskit

Curriculum Structure:

			Teaching	g and Learning S	Scheme	
Course Code	Course Title	Classroom Instruction (CI) (in hours per semester)	Lab Instruction (LI) (in hours per semester)	Team Work (TW) and Self Learning (SL) (TW + SL) (in hours per semester)	Total No. of Hours per Semester	Total Credits (C) * (Total Hours/30)
25PH1BSPCS / 25PH2BSPCS	QUANTUM PHYSICS AND COMPUTAT ION FOR COMPUTER SCIENCE ENGINEERI NG STREAM	40	30	10 + 40 = 50 (CCA=10 hrs) (SL=8*5=40 hrs)	120	4

Course Title: Quantum Physics	s and Sensors for Electronics	Semester	I/II
Engine	ering		
Course Code	25PH1BSPEC / 25PH2BSPEC	CIE Marks	50
Teaching Hours/Week (L:T:P: S)	3:0:2	SEE Marks	50
Total Hours of Pedagogy	40	Total Marks	100
Credits	04	Exam Hours	03
Examination type (SEE)			

Course Outcomes (Course Skill Set)

CO1: Understand and Apply the principles of quantum mechanics, transport phenomena in metals, properties of semiconducting and superconducting materials, construction and working principle of LASERs, optical fibers, and electronic sensors.

CO2: Use appropriate **Tools** to develop the concept of physics, perform as a **member of team** to design a model and make an oral presentation.

CO3: Conduct, Analyze and Interpret the data and results from Physics experiments.

Module-1: Quantum Mechanics

8 Hours

de-Broglie hypothesis – derivation by analogy. Definition of phase velocity and group velocity. Relation between group velocity and phase velocity, relation between group velocity and particle velocity, relation between group velocity, phase velocity and velocity of light (qualitative). Heisenberg's uncertainty principle – statement and physical significance. Application of uncertainty principle – non-existence of electron in the nucleus.

Wave function-properties, physical significance. Born Interpretation, expectation value, and its physical significance. Probability density and normalization of wave function. Setting up of one-dimensional time independent Schrödinger's wave equation. Particle in a one-dimensional potential well of infinite height and finite width (particle in a box) - Eigen functions, probability density and Eigen values for the first two states. Problems.

Self-study: Ehrenfest theorem, Quantum dots

Module-2: Electrical Properties Of Metals And Semiconductors

8 Hours

Introduction to classical free electron theory and its failures. Mechanisms of electron scattering in solids, Matheissen's rule. Assumptions of Quantum Free Electron Theory, density of states (qualitative), Fermi energy, expression for Fermi energy (qualitative), Fermi velocity, Fermi temperature. Fermi factor, variation of Fermi factor with temperature and energy. Merits of quantum free electron theory.

Introduction to Semiconductors, expression for concentration of electrons in conduction band, expression for hole-concentration in valance band (qualitative). Expression for intrinsic carrier concentration. Fermi level for intrinsic (derivation) and extrinsic semiconductor (qualitative), expression for electrical conductivity of semiconductors and energy band gap. Hall effect, expressions

for Hall voltage, Hall coefficient, and its applications. Problems.

Self-study: Semiconductors in electronics applications

Module-3: Superconductivity

8 Hours

Introduction to superconductors – Zero resistance state, temperature dependence of resistivity, persistent current, three critical parameters - critical temperature, critical magnetic field and critical current: Silsbee effect. Derivation of critical current for a cylindrical wire using ampere's law. Meissner effect. Type-I and Type-II superconductors. Formation of vortices.

BCS Theory - two-fluid model, formation of Cooper pairs, phase coherent state. Limitations of BCS theory, examples of systems with low and high electron-phonon coupling. Cooper pair tunneling (Andreev reflection). Josephson junction, flux quantization, DC and AC SQUIDs (qualitative), MAGLEV vehicle. Problems.

Self-study: Principle and working of MRI

Module-4: Photonics 8 Hours

LASERs: Introduction, characteristics of LASERs. Interaction of radiation with matter – Einstein's A and B coefficients. Expression for energy density of a system under thermal equilibrium in terms of Einstein's A and B coefficients. Conditions for Laser action. Requisites of a LASER system. Construction and working of He-Ne LASER. Applications of LASERs: Mach-Zehnder interferometer.

Optical Fiber: Introduction, principle of propagation, angle of acceptance, and numerical aperture. Expression for numerical aperture and condition for propagation. Number of modes: V-number. Classification of optical fibers. Attenuation- attenuation coefficient (qualitative), causes of attenuation. Applications of optical fibers: fiber optic displacement sensor and fiber optic temperature sensor. Problems.

Self-study: Various applications of LASERs

Module-5: Semiconductor Devices And Sensors

8 Hours

Classification of semiconductors: Direct and indirect band gap with E-K diagram. Application of direct band gap semiconductor- construction and working of semiconducting diode LASER.

Devices: Photodiode and power responsivity, experimental determination of energy gap (E_g) using four probe method.

Sensors: Light Dependent Resistor (LDR), Resistance Temperature Detectors (RTD), Sensing mechanisms, Piezo-electric sensors, Metal Oxide Semiconductor (MOS) sensors for gas sensing. Problems.

Self-Study: Electronic devices, VLSI and embedded systems

Suggested Learning Resources:

I. Text books:

- 1. Engineering Physics, Satyendra Sharma and Jyotsna Sharma, Pearson, 2018.
- 2. Engineering Physics, S L Kakani, Shubra Kakani, 3rd Edition, 2020, CBS Publishers and Distributers Pvt. Ltd.
- 3. Solid State Physics, S. O. Pillai, New Age International, 2022.
- 4. Basic Electronics, B L Theraja, Multi-color Edition, S Chand, 2006.

II. Reference books / Manuals:

- 1. Engineering Physics, S Mani Naidu, Pearson, Fourteenth Impression, 2024.
- 2. Beiser, A. (2002). Concepts of Modern Physics (6th ed.). McGraw-Hill Education.
- 3. Griffiths, D. J. (2018). Introduction to Quantum Mechanics (2nd or 3rd ed.). Pearson.
- 4. Tinkham, M. (2004). Introduction to Superconductivity (2nd ed.). Dover Publications.
- 5. Mishra, P. K. (2009). Superconductivity Basics and Applications. Ane Books.
- 6. Ghatak, A., & Thyagarajan, K. (2005). Optical Electronics. Oxford University Press.
- 7. Saleh, B. E. A., & Teich, M. C. (2019). Fundamentals of Photonics (3rd edition) Wiley.

III. Web links and Video Lectures (e-Resources):

- 1. NPTEL Quantum Mechanics I (IIT Madras): https://nptel.ac.in/courses/115106066
- 2. NPTEL Physics: Introductory Quantum Mechanics (NOC): https://archive.nptel.ac.in/courses/115/104/115104096
- 3. Solid State Physics NPTEL (IIT Madras) https://nptel.ac.in/courses/115106127
- 4. A Brief Course on Superconductivity NPTEL IIT Guwahati (Prof. Saurabh Basu)
- 5. Playlist Introduction Video: https://www.youtube.com/watch?v=SHoGV-sezNI
- 6. Full playlist available via the YouTube channel description or archive link.
- 7. Concepts in Magnetism and Superconductivity NOC (IIT Kharagpur)Series start (Lecture 1): https://digimat.in/nptel/courses/video/115105131/L01.html
- 8. Introduction to Photonics NPTEL (IIT Madras, Prof. Balaji Srinivasan) Lecture 03 to Lecture 12 cover: Direct video link (start Lecture 03): https://nptel.ac.in/courses/108106135/03
- 9. Semiconductor Optoelectronics NPTEL (IIT Delhi, Prof. M. R. Shenoy)Direct video link (start relevant lecture): https://nptel.ac.in/courses/108108174/05
- Sensors and Actuators NPTEL (IISc Bangalore, Prof. Hardik J. Pandya) Lecture Introduction to Sensors, Transducers & Actuators, incl. Hall, RTDs, Thermistors https://digimat.in/nptel/courses/video/108108147/L01.html
- 11. Smart Sensors NPTEL Lecture 34 Covers various sensors including gas, pressure, MOS sensors, photodetectors like SNSPD https://www.youtube.com/watch?v=oRydUfgMdgA
- 12. Lecture 32 Superconducting Qubits (includes Charge Qubit / Cooper-Pair Box) https://www.youtube.com/watch?v=iYo8ALJ-Mls
- 13. **Virtual LAB:** https://www.vlab.co.in/participating-institute-amrita-vishwa-vidyapeetham
- 14. **Virtual LAB:** https://vlab.amrita.edu/index.php?sub=1&brch=189&sim=343&cnt=1

Activity-Based Learning/Practical-Based Learning:

- 1. http://nptel.ac.in
- 2. https://swayam.gov.in
- 3. https://virtuallabs.merlot.org/vl_physics.html
- 4. https://phet.colorado.edu
- 5. https://www.myphysicslab.com

Teaching-Learning Process (Innovative Delivery Methods):

- 1. Chalk and Talk
- 2. Blended Mode of Learning
- 3. Simulations, Interactive Simulations and Animations
- 4. NPTEL and Other Videos for theory topics
- 5. Smart Class Room
- 6. Flipped Class
- 7. Lab Experiment Videos

Assessment Structure:

Component	Type of assessment	Max. Marks	Reduced to	Total	Total Marks				
	CCA	10	05						
CIE – Theory	Test 1	40	10	50	50				
	Test 2	40	10	30	30				
CIE – Lab	Test	50	25						
SEE	Semester End Exam	100	5	0	50				
Grand Total M	Grand Total Marks								

Course objectives:

- 1. To impart the knowledge of quantum mechanics and its applications
- 2. To provide insight to the electrical properties of metals, semiconductors, and superconductors, and their engineering applications
- 3. To understand the principles of LASERs, optical fibers and electronic sensors to explore their practical implications

CO-PO mapping with strength:

COs	POs										
	1	2	3	4	5	6	7	8	9	10	11
CO1	3	2									
CO2					1				1	1	
CO3				3							

List of Lab activities:

- 1. Wavelength of LASER by diffraction
- 2. Divergence angle of a LASER
- 3. Numerical aperture of an optical fiber
- 4. Wavelength of LEDs/Planck's constant
- 5. Fermi energy of copper
- 6. Dielectric constant of a material by charging and discharging of a capacitor
- 7. Energy gap of a semiconductor using four probe method
- 8. V-I characteristics of a photodiode
- 9. Frequency response of series and parallel LCR circuits
- 10. Black box
- 11. Attenuation coefficient of OFC
- 12. GNU step interactive simulations
- 13. Study of motion using spread sheet
- 14. PHET Interactive Simulations

(https://phet.colorado.edu/en/simulations/filter?subjects=physics&type=html,prototype)

Curriculum Structure:

		Teaching and Learning Scheme						
Course Code	Course Title	Classroom Instruction (CI) (in hours per semester)	Lab Instruction (LI) (in hours per semester)	Team Work (TW) and Self Learning (SL) (TW + SL) (in hours per semester)	Total No. of Hours per Semester	Total Credits (C) * (Total Hours/30)		

25PH1BSPEC / 25PH2BSPEC	Quantum Physics and Sensors For Electronics Engineering	40	30	10 + 40 = 50 (CCA=10 hrs) (SL=8*5=40 hrs)	120	4
----------------------------	---	----	----	---	-----	---

Course Title: Physics of Materials fo	or Electrical Engineering	Semester	I
Course Code	25PH1BSPEE	CIE Marks	50
Teaching Hours/Week (L:T:P: S)	3:0:2	SEE Marks	50
Total Hours of Pedagogy	40	Total Marks	100
Credits	04	Exam Hours	03
Examination type (SEE)		1	

Course Outcomes (Course Skill Set)

CO1: Understand and Apply the principles of quantum mechanics, transport phenomena in metals, properties of dielectric, magnetic, semiconducting and superconducting materials, construction and working principle of thermoelectric devices.

CO2: Use appropriate Tools to develop the concept of physics, perform as a member of team to design a model and make an oral presentation.

CO3: Conduct, Analyze and Interpret the data and results from Physics experiments.

Module-1: Quantum Mechanics

8 Hours

de-Broglie hypothesis – derivation by analogy. Definition of phase velocity and group velocity. Relation between group velocity and phase velocity, relation between group velocity and particle velocity, relation between group velocity, phase velocity and velocity of light (qualitative). Heisenberg's uncertainty principle – statement and physical significance. Application of uncertainty principle – non-existence of electron in the nucleus.

Wave function-properties, physical significance. Born Interpretation, expectation value, and its physical significance. Probability density and normalization of wave function. Setting up of one-dimensional time independent Schrödinger's wave equation. Particle in a one-dimensional potential well of infinite height and finite width (particle in a box) - Eigen functions, probability density and Eigen values for the first two states. Problems.

Self-study: Ehrenfest theorem, Ouantum dots

Module-2: Electrical Properties of Metals And Semiconductors

8 Hours

Introduction to classical free electron theory and its failures. Mechanisms of electron scattering in solids, Matheissen's rule. Assumptions of Quantum Free Electron Theory, density of states (qualitative), Fermi energy, expression for Fermi energy (qualitative), Fermi velocity, Fermi temperature. Fermi factor, variation of Fermi factor with temperature and energy. Merits of quantum free electron theory.

Introduction to Semiconductors, expression for concentration of electrons in conduction band, expression for hole-concentration in valance band (qualitative). Expression for intrinsic carrier concentration. Fermi level for intrinsic (derivation) and extrinsic semiconductor (qualitative), expression for electrical conductivity of semiconductors and energy band gap. Hall effect, expressions for Hall voltage, Hall coefficient, and its applications. Problems.

Self-study: Semiconductors in electronics applications

Module-3: Superconductivity

8 Hours

Introduction to superconductors – Zero resistance state, temperature dependence of resistivity, persistent current, three critical parameters - critical temperature, critical magnetic field and critical current: Silsbee effect. Derivation of critical current for a cylindrical wire using ampere's law. Meissner effect. Type-I and Type-II superconductors. Formation of vortices.

BCS Theory - two-fluid model, formation of Cooper pairs, phase coherent state. Limitations of BCS theory, examples of systems with low and high electron-phonon coupling. Cooper pair tunneling (Andreev reflection). Josephson junction, flux quantization, DC and AC SQUIDs (qualitative), MAGLEV vehicle. Problems.

Self-study: Principle and working of MRI

Module-4: Dielectric and Magnetic Materials

8 Hours

Dielectric Materials: Introduction, electrical polarization, types of polarization, expression for electronic polarizability. Expression for internal field in one dimensional liquids and solids, Lorentz field. Clausius–Mossotti relation. Applications of dielectrics in capacitors, transformers (oils), SF6 in high voltage application.

Magnetic Properties of Materials: Classification of magnetic materials. Ferromagnetic materials – Weiss's domain theory. Importance of Curie temperature, ferromagnetic hysteresis and its explanation using domain theory. Soft and hard magnetic materials. Applications: transformer cores, armature, inductors and chokes, permanent magnets. Problems.

Self-study: Dielectric and magnetic materials in electrical appliances

Module-5: Thermoelectric and Electrical Engineering Materials

8 Hours

Thermo emf and thermo current, Seebeck effect, Peltier effect, Seebeck and Peltier coefficients, figure of merit and its tuning (qualitative). Thermocouple and thermopiles (qualitative). Construction and working of thermoelectric generators (TEG) and thermoelectric coolers (TEC), Applications: exhaust of automobiles and refrigerator.

Ceramics: types, materials, applications. Electrostriction: strain proportional to square of the electric field, materials, applications. Magnetostriction: materials, applications. Piezoelectric effect, materials, applications. Problems.

Self-Study: Radioisotope thermoelectric generator (RTG), wearable flexible devices

Suggested Learning Resources:

I. Text books:

- 1. Solid State Physics-S O Pillai, 8th Ed- New Age International Publishers-2018.
- 2. Engineering Physics, Satyendra Sharma and Jyotsna Sharma, Pearson, 2018.
- 3. A Text book of Engineering Physics by M.N. Avadhanulu, P.G. Kshirsagar, S. Chand, 2014, Revised Edition.
- 4. Smart Materials and Structures, M. V. Gandhi and B. S. Thompson, Chapman & Hall.

I. Reference books / Manuals:

- 1. Engineering Physics, S L Kakani, Shubra Kakani, 3rd Edition, 2020, CBS Publishers and Distributers Pvt. Ltd., 2018.
- 2. Tinkham, M. (2004). Introduction to Superconductivity (2nd ed.). Dover Publications.
- 3. Engineering Physics-Gaur and Gupta-Dhanpat Rai Publications-2017.
- 4. Electrical Engineering Materials, R. K. Shukla, Tata McGraw-Hill Education, India, 2017 reprint edition.

II. Web links and Video Lectures (e-Resources):

- 1. Mod-02 Lec-20: Dielectrics Prof. D. K. Ghosh, IIT Bombay https://www.youtube.com/watch?v=P9VyW2wq9ZE
- 2. Mod-01 Lec-16: Dielectric (Insulating) Solids Prof. G. Rangarajan, IIT Madras https://www.youtube.com/watch?v=etjZmdmrjSU
- 3. Lecture 41: Thermoelectric Generators Functioning and Applications https://www.youtube.com/watch?v=G9NgoxHMPwk
- 4. NPTEL course: Solid State Physics Prof. A.K. Raychaudhuri, IIT Kharagpur Course link: https://archive.nptel.ac.in/courses/115/105/115105099
- 5. Mod-01 Lec-27: Superconductivity Perfect Conductivity & Diamagnetism Prof. G. Rangarajan, IIT Madras https://www.youtube.com/watch?v=GglT1RoBPzg
- 6. Lecture 01: PMMC Instrument https://www.youtube.com/watch?v=n1MinLtvnPY
- 7. Lecture 02: Electrodynamic / Moving Iron Instruments https://www.youtube.com/watch?v=n1MinLtvnPY&list=PLbRMhDVUMngcoKrA4sHzvb https://www.youtube.com/watch?v=n1MinLtvnPY&list=PLbRMhDVUMngcoKrA4sHzvb https://www.youtube.com/watch?v=n1MinLtvnPY&list=PLbRMhDVUMngcoKrA4sHzvb https://www.youtube.com/watch?v=n1MinLtvnPY&list=PLbRMhDVUMngcoKrA4sHzvb
- 8. Lecture 03: Measurement Systems Characteristics https://www.youtube.com/watch?v=Hlvbr5DCEfM
- 9. Electrical Measurement course Prof Avishek Chatterjee IIT Kharagpur : https://www.youtube.com/playlist?list=PLbRMhDVUMngcoKrA4sH-zvbNVSE6IpEio
- 10. **Virtual LAB:** https://www.vlab.co.in/participating-institute-amrita-vishwa-vidyapeetham
- 11. **Virtual LAB:** https://vlab.amrita.edu/index.php?sub=1&brch=189&sim=343&cnt=1

Activity-Based Learning/Practical-Based Learning:

- 1. http://nptel.ac.in
- 2. https://swayam.gov.in
- 3. https://virtuallabs.merlot.org/vl_physics.html
- 4. https://phet.colorado.edu
- 5. https://www.myphysicslab.com

Teaching-Learning Process (Innovative Delivery Methods):

- 1. Chalk and Talk
- 2. Blended Mode of Learning

- 3. Simulations, Interactive Simulations and Animations
- 4. NPTEL and Other Videos for theory topics
- 5. Smart Class Room
- 6. Flipped Class
- 7. Lab Experiment Videos

Assessment Structure:

Component	Type of assessment	Max. Marks	Reduced to	Total	Total Marks	
CIE – Theory	CCA	10	05			
	Test 1	40	10	50	50	
	Test 2	40	10	30	30	
CIE – Lab	Test	50	25			
SEE	Semester End Exam	100	5	0	50	
Grand Total M	larks				100	

Course objectives:

- 1. To impart the knowledge of quantum mechanics and its applications
- 2. To provide insight to the electrical properties of metals, dielectric, semiconductors and superconductors, and their engineering applications
- 3. To understand the essentials of thermoelectric, magnetic and engineering materials for practical applications

CO-PO mapping with strength:

COs	POs										
	1	2	3	4	5	6	7	8	9	10	11
CO1	3	2									
CO2					1				1	1	
CO3				3							

List of Lab activities:

- 1. Wavelength of LASER by diffraction
- 2. Divergence angle of a LASER
- 3. Numerical aperture of an optical fiber
- 4. Wavelength of LEDs/Planck's constant
- 5. Fermi energy of copper

- 6. Dielectric constant of a material by charging and discharging of a capacitor
- 7. Energy gap of a semiconductor using four probe methods
- 8. V-I characteristics of a photodiode
- 9. Frequency response of series and parallel LCR circuits
- 10. Black Box
- 11. Attenuation coefficient of OFC

Curriculum Structure:

		Teaching and Learning Scheme				
Course Code	Course Title	Classroom Instruction (CI) (in hours per semester)	Lab Instruction (LI) (in hours per semester)	Team Work (TW) and Self Learning (SL) (TW + SL) (in hours per semester)	Total No. of Hours per Semester	Total Credits (C) * (Total Hours/30)
25PH1BSPEE	Physics Of Materials For Electrical Engineering	40	30	10 + 40 = 50 (CCA=10 hrs) (SL=8*5=40 hrs)	120	4

Course Title: Physics of Structura	Semester	I	
Course Code	25PH1BSPCV	CIE Marks	50
Teaching Hours/Week (L:T:P: S)	3:0:2	SEE Marks	50
Total Hours of Pedagogy	40	Total Marks	100
Credits	04	Exam Hours	03
Examination type (SEE)			

Course Outcomes (Course Skill Set)

CO1: Understand and Apply the concept of vibrations, elastic properties of materials, natural hazards and their safety measures, acoustic design, various material characterization techniques to obtain the desired parameters.

CO2: Use appropriate Tools to develop the concept of physics, perform as a member of team to design a model and make an oral presentation.

CO3: Conduct, Analyze and Interpret the data and results from physics experiments.

Module-1: Oscillations 8 Hours

Theory of free vibrations: Periodic motion, simple harmonic motion (SHM), equation of a simple harmonic oscillator, expressions for period and frequency, energy considerations-total energy, conversion of energy from kinetic to potential energy in SHM.

Theory of damped vibrations: Resistive forces, equation of motion-expression for decaying amplitude, three cases of damping. Logarithmic decrement, relaxation time and quality factor (qualitative).

Theory of forced vibrations: Equation of motion-expression for amplitude and Phase, three cases of forcing.

Resonance: Phenomenon of resonance. Example of resonance, LCR circuit. Problems.

Self-study: Coupled vibrations, Musical instruments, ESR and NMR

Module-2: Elasticity 8 Hours

Stress, strain and their types. Hooke's law. Stress-strain diagram. Young's Modulus (q), bulk modulus (k), rigidity modulus (η) and Poisson's ratio (σ). Relation between Young's modulus (q), Bulk modulus (k) in terms of α and β (or σ). Relation between Rigidity modulus (η), Young's modulus (q) in terms of α and β (or σ). Relation between σ , k and η . Relation between all the three-elastic modulus (η , k and η). Work done per unit volume in a strain. Expression for twisting couple per unit twist.

Beams: Bending moment and derivation of expression.

Cantilever: Expression for depression at free end of Cantilever. Problems.

Self-study: Types of pendulums, various types of bridges and structures

Module-3: Waves And Their Role In Structural Behavior 8 Hours

Types of waves, wave propagation in beams, rods, and slabs, boundary effects, wave dispersion, damping in structures, energy dissipation techniques in structures. Introduction to earthquakes, general characteristics, P-waves, S-waves, love waves, and Rayleigh waves.

Physics of earthquakes, Richter scale of measurement and earthquake-resistant measures, tsunami (causes for tsunami, characteristics, adverse effects, risk reduction measures, engineering structures to withstand tsunami), seismometer and seismograph. Landslide - causes such as excess rainfall, geological structure change, human excavation. Problems.

Self-study: Ultrasonic waves and applications, natural hazards

Module-4: Acoustics, Radiometry and Photometry

8 Hours

Introduction to acoustics, types of acoustics, reverberation and reverberation time, absorption power and absorption coefficient, requisites for acoustics in auditorium, Sabine's formula (derivation), measurement of absorption coefficient, factors affecting the acoustics and remedial measures, sound insulation and its measurements. Noise and its measurements, impact of noise in multi-storied buildings. Radiometry and photometry: radiation quantities, spectral quantities, relation between luminance and radiant quantities, reflectance and transmittance. Photometry (cosine law and inverse square law). Problems.

Self-study: Design of auditorium and radiation hazards

Module-5: Materials Characterization and Instrumentation Techniques 8 Hours

Materials properties: introduction, crystal systems, planes in a crystal. Miller indices – expression for interplanar spacing in terms of Miller indices. Relation between lattice constant and bulk density. Co-ordination number, relation between atomic radius and lattice constant. Atomic packing factor for simple cubic, BCC and FCC lattices.

Instrumentation techniques: Bragg's law, X-ray diffractometer (XRD), crystallite size determination by Scherrer equation. Principle, construction, working and applications of Scanning Electron Microscope (SEM). Problems.

Self-Study: Analysis using XPS, AFM, FTIR and UV-Vis

Suggested Learning Resources:

I. Reference books / Manuals:

- 1. Physics, Oscillations and Waves, Optics and Quantum Mechanics, H M Agarwal and R M Agarwal, Pearson, 2025.
- 2. Engineering Physics, Satyendra Sharma and Jyotsna Sharma, Pearson, 2018.
- 3. Dynamics of Structures Theory and Applications to Earthquake Engineering Anil K. Chopra, University of California at Berkeley, Fourth Edition. Prentice Hall.
- 4. Vibrations and Waves, A P French, MIT introductory Physics, 2003
- 5. Engineering Physics by R. K. Gaur and S. L. Gupta, 2010 Edition, Dhanpat Rai Publications Ltd., New Delhi-110002.
- 6. Engineering Physics, S L Kakani, Shubra Kakani, 3rd Edition, 2020, CBS Publishers and Distributers Pvt. Ltd., 2018.

- 7. Introduction to Seismology, Earthquakes, and Earth Structure, Stein, Seth, and Michael Wysession. Blackwell Publishing, 2003.
- 8. Photometry Radiometry and Measurements of Optical Losses, Micheal Bukshtab, Springer, 2nd Edition.
- 9. Engineering Physics, S Mani Naidu, Pearson, 2025.
- 10. Building Science: Lighting and Acoustics, B. P. Singh and Devaraj Singh, Dhanpat Rai Publications (P) Ltd.
- 11. A Text book of Engineering Physics- M.N. Avadhanulu and P.G. Kshirsagar, 10th revised Ed, S. Chand. & Company Ltd, New Delhi.
- 12. Timoshenko, S. and Goodier J.N. "Theory of Elasticity", 2nd Edition, McGraw Hill Book Co, 2001.
- 13. Sadhu Singh, "Theory of Elasticity", Khanna Publishers, 1997.
- 14. Solid State Physics S O Pillai, 8th Ed- New Age International Publishers-2018.
- 15. Characterization of Materials- Mitra P. K. Prentice Hall India Learning Private Limited.
- 16. An Introduction to Disaster Management, Natural Disaster & Man-Made Hazards, S. Vaidyanathan, IKON Books.
- 17. Natural Hazards, Edward Bryant, Cambridge University Press, 2nd Edition.
- 18. Natural hazards, Earthquakes, Volcanoes, and landslides by Ramesh P Singh, and Darius Bartlett, CRC Press, Taylor and Francis group.
- 19. Principles of Fire Safety Engineering Understanding Fire & Fire Protection, Akhil Kumar Das, PHI Learning, II Edition.
- 20. Disaster Management, R. Subramanian, S. Chand Publishing, 2018.

II. Web links and Video Lectures (e-Resources):

- 1. Simple Harmonic motion: https://www.youtube.com/watch?v=k2FvSzWeVxQ
- 2. **Stress-strain curves:** https://web.mit.edu/course/3/3.11/www/modules/ss.pdf
- 3. **Stress curves:** https://www.youtube.com/watch?v=f08Y39UiC-o
- 4. **Acoustics:** https://www.youtube.com/watch?v=fHBPvMDFyO8
- 5. **Fundamentals of Acoustics:**https://www.youtube.com/watch?pp=0gcJCfwAo7VqN5tD&v=rT9B44Q4Rko
- 6. **Fundamentals of Acoustics playlist:**https://www.youtube.com/playlist?list=PLgMDNELGJ1CYWnDbcbVET5zCbN4aLEbZQ
- 7. **Virtual lab:** https://www.vlab.co.in/participating-institute-amrita-vishwa-vidyapeetham
- 8. **Material characterization:** https://onlinecourses.nptel.ac.in/noc20 mm14/preview

Activity-Based Learning/Practical-Based Learning:

- 1. http://nptel.ac.in
- 2. https://swayam.gov.in
- 3. https://virtuallabs.merlot.org/vl_physics.html
- 4. https://phet.colorado.edu
- 5. https://www.myphysicslab.com

Teaching-Learning Process (Innovative Delivery Methods):

- 1. Chalk and Talk
- 2. Blended Mode of Learning
- 3. Simulations, Interactive Simulations and Animations
- 4. NPTEL and Other Videos for theory topics
- 5. Smart Class Room
- 6. Flipped Class
- 7. Lab Experiment Videos

Assessment Structure:

Component	Type of assessment	Max. Marks	Reduced to	Total	Total Marks	
	CCA	10	05		50	
CIE – Theory	Test 1	40	10	50		
	Test 2	40	10	30		
CIE – Lab	Test	50	25			
SEE	Semester End Exam	100	5	0	50	
Grand Total M		100				

Course objectives:

- 1. 1. To impart the knowledge of elasticity and vibrations in advanced materials and mechanical structures
- 2. To provide overview of natural hazards and their prevention protocols
- 3. To understand the physics of waves and acoustics, and their implications in structural design
- 4. To emphasize on advanced characterization tools for analyzing materials properties

CO-PO mapping with strength:

GO.	POs										
COs	1	2	3	4	5	6	7	8	9	10	11
CO1	3	2									
CO2					1				1	1	
CO3				3							

List of Lab activities:

- 1. Young's modulus by single cantilever
- 2. Rigidity modulus by torsional pendulum
- 3. Series LCR circuits
- 4. Parallel LCR circuits
- 5. X-ray film analysis
- 6. Spring constant
- 7. Divergence angle of a LASER
- 8. Numerical aperture of an optical fiber
- 9. Wavelength of LASER by diffraction
- 10. Resistivity by four probe method
- 11. Fermi energy of copper
- 12. Study of motion using spread sheet
- 13. GNU step interactive simulations
- 14. PHET Interactive simulations (https://phet.colorado.edu/en/simulations/filter?subjects=physics&type=html,prototype)

Curriculum Structure:

	_		Teaching	g and Learning S	Scheme	
Course Code	Course Title	Classroom Instruction (CI) (in hours per semester)	Lab Instruction (LI) (in hours per semester)	Team Work (TW) and Self Learning (SL) (TW + SL) (in hours per semester)	Total No. of Hours per Semester	Total Credits (C) * (Total Hours/30)
25PH1BSPCV	Physics Of Structural Systems For Civil Engineering	40	30	10 + 40 = 50 (CCA=10 hrs) (SL=8*5=40 hrs)	120	4

Course Title: Physics of Materials fo	r Mechanical Engineering Stream	Semester	II
Course Code	25PH2BSPME	CIE Marks	50
Teaching Hours/Week (L:T:P: S)	3:0:2	SEE Marks	50
Total Hours of Pedagogy	40	Total Marks	100
Credits	04	Exam Hours	03
Examination type (SEE)			

Course Outcomes (Course Skill Set)

CO1: Understand and Apply the concept of vibrations, elastic properties of materials, thermoelectric effects, cryogenics and various material characterization techniques to obtain the desired parameter.

CO2: Use appropriate Tools to develop the concept of physics, perform as a member of team to design a model and make an oral presentation.

CO3: Conduct, Analyze and Interpret the data and results from physics experiments.

Module-1: Oscillations 8 Hours

Theory of free vibrations: Periodic motion, simple harmonic motion, equation of a simple harmonic oscillator, expressions for period and frequency, energy considerations-total energy, conversion of energy from kinetic to potential energy in SHM.

Theory of damped vibrations: Resistive forces, equation of motion-expression for decaying amplitude, three cases of damping. Logarithmic decrement, relaxation time and quality factor (qualitative).

Theory of forced vibrations: Equation of motion-expression for amplitude and phase, three cases of forcing.

Resonance: Phenomenon of resonance. Example of resonance, LCR circuit. Problems.

Self-study: Coupled vibrations, Musical instruments, ESR and NMR

Module-2: Elasticity 8 Hours

Stress, strain and their types. Hooke's law. Stress-strain diagram. Young's Modulus (q), bulk modulus (k) and rigidity modulus (η). Poisson's ratio (σ). Relation between Young's modulus (q), Bulk modulus (k) in terms of α and β (or σ). Relation between Rigidity modulus (η), Young's modulus (η) in terms of α and β (or σ). Relation between σ , k and η . Relation between all the three-elastic modulus (η , k and η). Work done per unit volume in a strain. Expression for twisting couple per unit twist.

Beams: Bending moment and derivation of expression.

Cantilever: Expression for depression at free end of cantilever. Problems. **Self-study:** Types of pendulums, various types of bridges and structures

Module-3: Thermoelectric Materials And Properties

8 Hours

Thermo emf and thermo current, Seebeck effect, Peltier effect, Seebeck and Peltier coefficients, figure of merit (Mention Expression), laws of thermoelectricity. Expression for thermo emf in terms of T_1 and T_2 . Thermo couples and thermopile (Qualitative).

Thermal conductivity, expression for thermal conductivity of a conductor using classical free electron theory. Wiedemann–Franz law, calculation of Lorentz number using classical and quantum assumptions. Theory and determination of thermal conductivity using Forbe's and Lee–Charlton's methods. Problems.

Self-study: Transducers, exhaust of automobiles and refrigerators.

Module-4: CRYOGENICS 8 Hours

Introduction to thermodynamics, Carnot's principle, efficiency, production of low temperature - Joule Thomson effect (Derivation with 3 cases), porous plug experiment with theory, thermodynamical analysis of Joule Thomson effect, liquefaction of oxygen by cascade process, Lindey's air liquefier, liquefaction of helium and its properties (superfluidity), platinum resistance thermometer, applications of cryogenics: aerospace, Dewar flask. Problems.

Self-study: Cryogenic engines and CE-20 in GSLV

Module-5: Materials Characterization and Instrumentation Techniques 8 Hours

Materials properties: Introduction, crystal systems, planes in a crystal. Miller indices – Expression for interplanar spacing in terms of Miller indices. Relation between lattice constant and bulk density. Coordination number, Relation between atomic radius and lattice constant. Atomic packing factor for Simple Cubic, BCC and FCC lattices.

Instrumentation techniques: Bragg's law, X-ray diffractometer (XRD), crystallite size determination by Scherrer equation. Principle, construction, working and applications of Scanning Electron Microscope (SEM). Problems.

Self-Study: Analysis using XPS, AFM, FTIR and UV-Vis

Suggested Learning Resources:

I. Reference books / Manuals:

- **1.** Physics, Oscillations and Waves, Optics and Quantum Mechanics, H M Agarwal and R M Agarwal, Pearson, 2025
- 2. Engineering Physics, Satyendra Sharma and Jyotsna Sharma, Pearson, 2018.
- **3.** A Text book of Engineering Physics by M.N. Avadhanulu, P G. Kshirsagar, S Chand, 2014, Revised Edition.
- 4. Fundamentals of Cryogenic Engineering, Mamata Mukhopadhyay, PHI Learning (India).
- 5. Characterization of Materials Mitra P.K. Prentice Hall India Learning Private Limited.
- 6. Vibrations and Waves (MIT introductory Physics Series), A P French, CBS, 2003 Edition.
- 7. Elements of Properties of Matter, D S Mathus, S Chand, Reprint 2016.

- 8. Engineering Physics, S L Kakani, Shubra Kakani, 3rd Edition, 2020, CBS Publishers and Distributers Pvt. Ltd.
- 9. Cryogenics: A Text Book, S.S. Thipse, Alpha Science International, Limited 2013.
- 10. Treatise on Heat, M N Saha and B N Srivastava, 2nd Edition, Indian Press, 1935; Original from, the University of California.
- 11. Materials Characterization Techniques-Sam Zhang, Lin Li, Ashok Kumar, CRC Press, First Edition, 2008.
- 12. Solid State Physics S O Pillai, 8th Ed- New Age International Publishers 2018.

II. Web links and Video Lectures (e-Resources):

- 1. **Simple Harmonic motion:** https://www.youtube.com/watch?v=k2FvSzWeVxQ
- 2. **Stress-strain curves:** https://web.mit.edu/course/3/3.11/www/modules/ss.pdf
- 3. Stress curves: https://www.youtube.com/watch?v=f08Y39UiC-o
- 4. **Cryogenic Engineering:** https://www.youtube.com/watch?v=4gGMBNEzeuc
- 5. Liquefaction of gases: https://www.youtube.com/watch?v=aMelwOsGpIs
- 6. **Virtual lab:** https://www.vlab.co.in/participating-institute-amrita-vishwa-vidyapeetham
- 7. Material characterization: https://onlinecourses.nptel.ac.in/noc20 mm14/preview

Activity-Based Learning/Practical-Based Learning:

- 1. http://nptel.ac.in
- 2. https://swayam.gov.in
- 3. https://virtuallabs.merlot.org/vl_physics.html
- 4. https://phet.colorado.edu
- 5. https://www.myphysicslab.com

Teaching-Learning Process (Innovative Delivery Methods):

- 1. Chalk and Talk
- 2. Blended Mode of Learning
- 3. Simulations, Interactive Simulations and Animations
- 4. NPTEL and Other Videos for theory topics
- 5. Smart Class Room
- 6. Flipped Class
- 7. Lab Experiment Videos

Assessment Structure:

Component	Type of assessment	ent to		Total	Total Marks		
	CCA	10	05				
CIE – Theory	Test 1	40	10	50	50		
	Test 2	40	10	30			
CIE – Lab	Test	50	25				
SEE	Semester End Exam	100	5	0	50		
Grand Total M	100						

Course objectives:

- 1. To impart the knowledge of elasticity and vibrations in advanced materials and mechanical structures
- 2. To provide insight to the principles of thermoelectric for realization in thermo-electric appliances
- 3. To understand the physics of low-temperature and its implications in cryogenic engineering
- 4. To emphasize on advanced characterization tools for analyzing materials properties

CO-PO mapping with strength:

COs	POs										
	1	2	3	4	5	6	7	8	9	10	11
CO1	3	2									
CO2					1				1	1	
CO3				3							

List of Lab activities:

- 1. Young's modulus by single cantilever
- 2. Rigidity modulus by torsional pendulum
- 3. Series LCR circuits
- 4. Parallel LCR circuits
- 5. Thermal conductivity of a good conductor by Forbe's method
- 6. Thermal conductivity of a poor conductor by Lee Charlton's method
- 7. Spring constant
- 8. X-ray film analysis
- 9. Fermi energy of copper
- 10. Numerical aperture of an optical fiber

- 11. Wavelength of LASER by diffraction
- 12. Divergence angle of a LASER
- 13. Study of motion using spread sheet
- 14. GNU step interactive simulations
- 15. PHET Interactive Simulations (https://phet.colorado.edu/en/simulations/filter?subjects=physics&type=html,prototype)

Curriculum Structure:

			Teachin	g and Learning S	Scheme	
Course Code	Course Title	Classroom Instruction (CI) (in hours per semester)	Lab Instruction (LI) (in hours per semester)	Team Work (TW) and Self Learning (SL) (TW + SL) (in hours per semester)	Total No. of Hours per Semester	Total Credits (C) * (Total Hours/30)
25PH2BSPME	Physics Of Materials For Mechanical Engineering Stream	40	30	10 + 40 = 50 (CCA=10 hrs) (SL=8*5=40 hrs)	120	4

Course Title: Computer-A	Aided Engineering Drawing	Semester	I/II
Course Code	25ME1ESCED / 25ME2ESCED	CIE Marks	50
Teaching Hours/Week (L:T:P: S)	1:0:2	SEE Marks	100
Total Hours of Pedagogy	65	Total Marks	100
Credits	3	Exam Hours	3
Examination type (SEE)			

Course Outcomes (Course Skill Set)

After completing the course, the students will be able to

CO1: Draw orthographic and Isometric projections of geometrical entities in various positions.

CO2: Develop 2D, 3D models and lateral surfaces of solids.

CO3: Use modern engineering tool (CAD software) necessary for engineering visualization

CO4: Interpret and communicate with sketches and engineering drawings with enhanced spatial visualization skills.

Module-1: 19 Hours

A: Introduction: Engineering Visualization, Principles of Engineering Graphics and their significance, BIS Conventions, dimensioning, scales, line conventions, material conventions, sketching. Introduction to CAD software, standard tool bar menu and description of most commonly used tool bars, and navigational tools. [1L + 0T+2P Hrs.]

B: Orthographic Projections

Introduction, quadrant system, Planes of projection, reference line and conventions employed, Projections of points in First and Third quadrants. Projections of straight lines (located in first quadrant and without reference to traces), True and apparent lengths, True and apparent inclinations to reference planes, simple application problems.

[2L +0T+ 6P Hrs.]

Projections of Plane Surfaces (First Angle Projection Only)

Introduction, Projections of plane surfaces: triangle, square, rectangle, rhombus, circle, regular pentagon and regular hexagon in different positions by change of position method.

[2L + 0T + 6P Hrs.]

Module-2: 17 Hours

Projections of solids (First Angle Projection Only)

Introduction, Projections of regular upright solid: tetrahedron, cube, prism, pyramid, cylinder and cone in different positions by change of position method.

Module-3: 15 Hours

A: Isometric Projection (Using Isometric Scale only)

Introduction, Isometric scale, Isometric projection of simple plane figures, Isometric projection of tetrahedron, hexahedron, right regular prisms, pyramids, cylinders, cones, spheres, cut spheres and combination of solids (maximum of two solids)

B: 3-D Modelling: Use of solid-modeling software for creating simple components: Solid and hollow right regular prisms and cylinders, solid pyramids, cones, spheres, and combination of solids and extracting orthographic views, sectional and Isometric views.

[3L+0T+ 12P Hrs.]

Module-4: 12 Hours

Development of lateral surfaces of right regular prisms, cylinders, pyramids, and cones & their frustums and truncations (resting with base on HP only). [2L+ 0T+ 10P Hrs.]

Module-5: 02 Hours

Multidisciplinary Applications Evaluation through Alternate assessment only

- 1. Civil stream: Modelling Basic Building Component (columns, beams, slabs, walls, doors, windows, staircase), drafting a 2D floor plan for a simple single-storey residential building, Converting the floor plan into 3D model with walls
- 2. Mechanical Stream: 3D Modelling of simple machine parts (Applying material properties and rendering for realistic visualization), Concept of Industrial drawing
- 3. Electric/Electronics Stream: 2D drawing of switches, sockets, panels, junction boxes, antenna: Single element patch antenna, antenna array, electric/electronics circuits
- 4. CSE stream: 2D Network drawing with wired and wireless, Network topology wired and wireless, Modelling of Raspberry Pi / Arduino boards, Router & switches, IoT devices [0L+0T+02P Hrs.]

Suggested Learning Resources: (Textbook/Reference Book):

I. Textbooks:

- 1. Engineering Drawing Vol 1 & 2 Combined, K. R. Gopala Krishna, ISBN 39789383214235, Subhas Stores, Bangalore, 2017.
- 2. Textbook of Computer Aided Engineering Drawing by K.R. Gopalakrishna, Sudhir Gopalakrishna, ISBN-135551234102489, 2017.

II. Reference books:

- 1. Engineering Drawing, N.D. Bhat& V.M. Panchal, 45 Edition, Charotar Publishing, Gujarat, 2000
- 2. Fundamental of Engineering Drawing & Graphics Technology, French, Thomas E., Vierck, C. J. and Foster, R. J., McGraw Hill Book Company (2005).
- 3. Fundamentals of Engineering Drawing with an Introduction to Interactive Computer Graphics for Design and Production- Luzadder Warren J., Duff John M Eastern Economy Edition, 2005- Prentice-Hall of India Pvt. Ltd., New Delhi.
- 4. A Primer on Computer Aided Engineering Drawing-2006, Published by VTU, Belagavi.
- 5. Electrical Engineering Drawing, Bhattacharya S. K., New Age International publishers, second edition 1998, reprint 2005.
- 6. Printed Circuit Board Design using AutoCAD, Chris Schroder, Newnes, 1997.
- 7. Introduction to Architectural and Technical Drawing: Roksaneh Rahbarianyazd Hourakhsh A. Nia, 2020

III. E-Books:

- 1. Siemens Solid Edge Exercises 200 Practice Drawings for Solid Edge and Other Feature-Based Modelling Software y Sachidanand Jha · 2019, ISBN:9781096479147, 1096479141, Amazon Digital Services LLC KDP Print US.
- 2. Solid Edge 2020 for Designers, 17th Editionbooks.google.co.in., Prof. Sham Tickoo, CADCIM Technologies, 2020.

IV. Web links and Video Lectures (e-Resources):

 NPTEL course on ENGINEERING DRAWING AND COMPUTER GRAPHICS https://nptel.ac.in/courses/112/105/112105294/#

Teaching-Learning Process (Innovative Delivery Methods):

- 1. The Laboratory session shall be held every week as per the time table and the performance of the student shall be evaluated in every session the average of marks over number of units is considered for 20 marks.
- 2. Project/Assignment/Experiential Learning covering syllabus

Assessment Structure:

CIE marks are finalized as per the details given below

Sl. No	Evaluation Method	Unit	Marks	Weightage
1.	CIE-Test 1	1B	40	
2.	CIE-Test 2	2	40	20
3.	CIE-Test 3	3,4	40	
4.	Sketching and lab assignments	1B -4	60	20
5.	Stream based Experiential	5	10	10
	Learning			
			100	50

SEE:

- 1. Manual sketching and drafting using CAD Software as in table
- 2. UNIT 1A & 5 shall not be considered for SEE
- 3. Candidate shall answer 4 full questions selecting one from each unit.

Sl. No	Unit	Number of questions	Weightage (To Answer one full question from each unit)				
			Sketching	Software	Total		
1	1B	02	20		20		
2	2	02	0	30	30		

3	3	02	0	30	30
4	4	02	20	0	20
	Total	08	40	60	100

COs and POs Mapping

		POs									
COs	1	2	3	4	5	6	7	8	9	10	11
CO1	3				2						
CO2	3				3						
CO3	3				3						

Course Title: Build	ing Science and Mechanics	Semester	I/II
Course Code	25CV1ESBSM/25CV2ESBSM	CIE Marks	50
Teaching Hours/Week	3:0:0:0	SEE Marks	50
(L:T:P:S)			
Total Hours of Pedagogy	40	Total Marks	100
Credits	03	Exam Hours	3
Examination type (SEE)			

Course Outcomes (Course Skill Set)

After completing the course, the students will be able to

CO1: Define the scope of various civil engineering specializations and recognize the significance of construction materials and building components.

CO2: Understand the fundamentals of sustainable construction practice, selection of green materials and interpretation of rating systems

CO3: Apply the concepts of force and moments to solve problems related to resultant and equilibrium of coplanar force system.

CO4: Locate the centroid of simple and composite plane laminas using first principles

Module-1: Introduction to building science

08 Hours

Importance and Scope of various Civil Engineering disciplines: Surveying, Structural Engineering, Geotechnical Engineering, Water Resources Engineering, Transportation Engineering, Environmental Engineering, Construction Planning and Project Management. Basic Materials of Construction: Production and Quality requirements of Cement, Burnt Clay bricks, Concrete blocks; Applications of Mortar, Plain and Reinforced Concrete, Pre cast concrete, Structural Steel; Life cycle analysis (concept of 4 phase analysis only)

Building components: Concept and functionalities of Foundation, Plinth, Column, Beam, Slab, Lintel, Chejja, Masonry wall and Staircase.

Module-2: Sustainable Construction Practices

08 Hours

Sustainability components: Green Buildings- Features, Necessity and benefits; Major Energy consumptive activities in buildings and efficient practices- Daylighting, Waste water treatment, Rain water harvesting.

Green Materials: Material selection criteria, Conventional construction materials and Green Materials, Carbon footprint, Availability and Applications of Green Materials: Stabilized Mud blocks, Lime pozzolana Cement, Lightweight/ Aerated Concrete (AAC) blocks, Bamboo.

Green building rating systems: IGBC, LEED – Purpose - Key highlights - Point System with Differential weightage.

Module-3: Force Systems: Resultant of coplanar forces

08 Hours

Concept of idealization, System of forces, Principles of transmissibility of a force, Law of Parallelogram of forces, Composition and Resolution of forces, Resultant of forces, Concurrent and non-concurrent coplanar force systems, Moment of forces, Couple, Varignon's theorem: Numerical examples.

Module-4: Force systems: Equilibrium of coplanar forces

08 Hours

Free body diagram, Equations of equilibrium, Lami's Theorem, Equilibrium of Coplanar Concurrent force systems, Equilibrium of Non -concurrent force systems (Point load, UDL and Simple support beam cases): Numerical examples.

Module-5: Centroid of Plane lamina

08 Hours

Centroid of Plane areas: Introduction, Locating the centroid of rectangle, triangle, circle, semicircle and quadrant of a circle using method of integration, centroid of composite areas and simple built-up sections, Numerical examples

Suggested Learning Resources:

I. Textbooks:

- 1. Rangwala, Building Construction,33rd Edition, 2016, Charotar Publishing House Pvt. Ltd., ISBN-10: 9385039040, ISBN-13: 978-9385039041
 - 2. Bansal R. K., Rakesh Ranjan Beohar and Ahmad Ali Khan, Basic Civil Engineering and Engineering Mechanics, 3rd Edition, 2015, Laxmi Publications, ISBN: 9789380856674.
 - 3. Kolhapure B K, Elements of Civil Engineering and Engineering Mechanics, 11th Edition, 2018, Eastern Book Promoters Belgaum [EBPB], ISBN: 5551234003896
 - 4. G Harihara Iyer, Green Building Fundamentals, 2022, Notion Press Publications, ISBN: 9798886416091

II. Reference books:

- 1. Beer F.P. and Johnston E. R., Mechanics for Engineers: Statics and Dynamics, 4th Edition, 1987, McGraw Hill, ISBN: 9780070045842
- 2. Meriam J. L. and Kraige L. G, Engineering Mechanics-Statics, Vol I–6th Edition, 2008, Wiley publication.
- 3. Irving H. Shames, Engineering Mechanics-Statics and Dynamics, 4th Edition, 2002, Prentice-Hall of India(PHI).
- 4. Hibbler R. C., Engineering Mechanics: Principles of Statics and Dynamics, 2017, Pearson Press, New Delhi.
- 5. Timoshenko S, Young D. H., Rao J. V., Sukumar Patil, Engineering Mechanics, 5th Edition, 2017,McGraw Hill Publisher, ISBN: 9781259062667
- 6. Bhavikatti S S, Engineering Mechanics, 4th Edition, 2018, New Age International Publications.
- 7. Reddy Vijaykumar K and Suresh Kumar K, Engineering Mechanics, 3rd Edition 2013, BS Publications.
- 8. Dr. Adv. HarshulSavla, Green Building: Principles & Practices, 2021, Notion Press, ISBN: 9781685866044

III. Web links and Video Lectures (e-Resources):

1. NPTEL: Introduction to Civil Engineering Profession,

https://nptel.ac.in/courses/105106201 2. NPTEL: Engineering Mechanics,

https://nptel.ac.in/courses/112103108

3. NPTEL: Sustainable Materials and Green Buildings,

https://nptel.ac.in/courses/105102195

Teaching-Learning Process:

The following are sample strategies that educators may adopt to enhance the effectiveness of the teaching-learning process and facilitate the achievement of course outcomes.

- 1. Chalk and talk.
- 2. PowerPoint presentation, Site/ Laboratory visits for materials and building component demonstrations.
- 3. Flipped Classroom
- 4. NPTEL and other videos for theory topics

Individual teachers can device innovative pedagogy to improve teaching-learning.

Assessment Structure:

Component	Type of Assessment	Max. Marks	Reduc ed Marks	Total	Min. Marks for Eligibility	Total marks		
	Quiz / AAT	20	10					
CIE- Theory	Test 1	40	20	50	20	50		
	Test 2	40	20					
	Test 3							
SEE	Semester End Exam	100	50		35	50		
	Grand Total							

The assessment in each course is divided equally between Continuous Internal Evaluation (CIE) and the Semester End Examination (SEE), with each carrying 50% weightage.

- To qualify and become eligible to appear for SEE, in the CIE, a student must score at least 40% of 50 marks, i.e., 20 marks.
- To pass the SEE, a student must score at least 35% of 100 marks.

Notwithstanding the above, a student is considered to have **passed the course**, provided the combined total of **CIE and SEE** is at least 40 out of 100 marks.

Suggested Learning Activities may include (but are not limited to):

- 1. Case Study Presentation
- 2. Assignments
- 3. Quiz
- 4. Course Project
- 5. Any other relevant and innovative academic activity
- 6. Use of MOOCs and Online Platforms

Suggested Innovative Delivery Methods may include (but are not limited to):

- 1. Case-Based Teaching
- 2. Flipped Classroom
- 3. Problem-Based Learning (PBL)
- 4. ICT-Enabled Teaching

Course Title: Introduction	n to Electrical Engineering	Semester	I/II	
Course Code	25EE1ESIEE / 25EE2ESIEE	CIE Marks	50	
Teaching Hours/Week (L:T:P: S)	3:0:0:0	SEE Marks	50	
Total Hours of Pedagogy	40 Hours	Total Marks	100	
Credits	0.00			
Examination type (SEE)				

Course Outcomes (Course Skill Set)

At the end of the course, the student will be able to:

- 1. Understand the concepts of various energy sources, electric circuits and electromagnetism
- 2. Apply knowledge of mathematics to solve problems related to electrical circuits.
- 3. Analyse the behaviour of electric circuits, transformers, DC motors and electric vehicles.
- 4. Analyse electricity billing and concepts of protective devices and safety measures

Engage in individual/team work to make effective technical presentation on electrical concepts and communicate effectively to the audience

Module-1: 08 Hours

Power Generation: Conventional and non-conventional energy sources, (Wind, Hydro, Solar, Nuclear: block diagram approach) Single-line diagram of power supply system showing power station, transmission system and distribution system. Definition of power grid.

DC circuits: Ohm's law and its limitations, Kirchhoff's laws, analysis of series, parallel and series-parallel circuits. Power and energy. Numerical. (Only Branch current method approach and current source numerical not included).

Module-2: 08 Hours

AC Circuits: Types of supplies (single phase and three phases), advantages, limitations and its applications. Generation of single-phase system. Equation of AC voltage and current, average value, RMS value, form factor, peak factor and their relations. Voltage and current relationships in R, L and C circuits, analysis of R-L, R-C and R-L-C series circuits (No-power derivations), concept of power, reactive power, apparent power and power factor. Illustrative examples.

Module-3: 08 Hours

DC Generator: Principle of operation, constructional details, induced emf expression, Relation between induced emf and terminal voltage. Numerical.

DC Motor: Principle of operation, back emf and its significance. Torque equation, types of motors (series and shunt), and applications of DC motors. Numerical.

Module-4: 08 Hours

Transformers: Introduction to transformers, necessity of transformer, principles of operation, constructional features, types (shell and core) of single phase transformers. EMF equation, losses, variation of losses with respect to load. Calculation of efficiency at different loads, condition for maximum efficiency, numerical.

Electric Vehicle: Introduction, block diagram approach, types of EV, Advantages and its limitations.

Module-5: 08 Hours

Domestic Wiring: Two-way and three-way control of loads.

Electricity Bill: Definition of "unit" used for consumption of electrical energy, power rating of common household appliances. Two-part electricity tariff, simple problems.

Equipment Safety measures: Working principle of fuse and miniature circuit breaker (MCB), merits and demerits. Definitions of rated current, fusing current, fusing factor.

Personal safety measures: Electric shock, safety precautions to avoid shock. Earthing and types: Plate earthing and pipe earthing.

Suggested Learning Resources: (Textbook/Reference Book):

I. Textbooks:

- 1. A text book of Electrical Technology by B.L. Theraja, S Chand and Company, reprint edition 2014
- 2. Principles of Electrical Engineering & Electronics by V. K. Mehta, Rohit Mehta, S. Chand and Company Publications, 2nd edition, 2015

II. Reference books:

- 1. Basic Electrical Engineering, D. P. Kothari and I. J. Nagrath, Tata McGraw Hill 4th edition, 2019
- 2. Fundamentals of Electrical Engineering by Rajendra Prasad, PHI, 3rd edition, 2014
- 3. Electrical Technology by E. Hughes, Pearson, 12th Edition, 2016
- 4. Basic Electrical and Electronics Engineering, K.Vijayarekha, et al, Cengage. Reprint 2023
- 5. Handbook of Electrical Engineering formulae, Harish C Rai, CBS Publications, 2018

III. Web links and Video Lectures (e-Resources):

1. www.nptel.ac.in

- A. Principle of Electrical Sciences, Prof Sanjay Agrawal, Indira Gandhi National Open University.
- B. Electricity and Electrical Wiring, Dr. Antara Mahanta Barua, Krishna Kanta Handiqui State Open University, Guwahati

Teaching-Learning Process (Innovative Delivery Methods):

The following are sample strategies that educators may adopt to enhance the effectiveness of the teaching- learning process and facilitate the achievement of course outcomes.

- 1. Technology Integration
- 2. Collaborative Learning
- 3. Flipped Classroom
- 4. Visual Based Learning

Assessment Structure:

Component	Type of assessme nt	Max. Mark s	Total	Reduced Marks	Total	Min. Marks required for eligibility	Total Marks
CIE – Theory	Quiz/AA T	10	10	10		20	
	Test 1	40	80	40	50		
	Test 2	40	(Best				
	Test 3	40	2 of 3 tests)				
	CIE			50	I.	20	50
SEE	End Exam	100		50		35	50
Grand Total Marks						40	100

Two best scores out of the three tests will be considered for CIE. CIE methods/question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.

Semester End Examination:

- Ten questions to be set; two questions from each unit with internal choice.
- Student should answer one question from each unit

Continuous Comprehensive Assessments (CCA):

CCA will be conducted for a total of 5 marks. It is recommended to include any one learning activity aimed at enhancing the holistic development of students. This activity should align with course objectives and promote higher-order thinking and application-based learning.

Rubrics for Learning Activity

	Rubrics for Learning Activity – 1, Maximum Marks:10 (Based on the nature of learning activity, design the rubrics for each activity)									
Activity type	Performance Indicator	Excellent	Very Good	Good	Fair	Needs Improve ment				
Present ation/ Semin ar (10)	Communicate effectively both in written and oral form. (5)	Presents ideas confidently, clearly, and engagingly with excellent audience interaction. (5)	Presents clearly the topic contents but falters while delivering the content. (4)	Presents the contents properly but struggles to deliver. (3)	Presents imprecise contents and finds difficulty in delivery.(2	Presents imprecise contents and fails to deliver. (1)				
	Demonstrate professional and ethical behaviour. (5)	Adheres to high ethical standards, shows strong professional conduct. (5)	Mostly adheres to ethical standards with minor	Understands ethics but inconsistent ly applies them. (3)	Shows limited awareness of ethical standards (2)	Shows disregard to ethics and professional ism (1)				

lapses. (4)

	Electronics and Communication neering	Semester	I/II
Course Code	25EC1ESIEL/25EC2ESIEL	CIE Marks	50
Teaching Hours/Week (L:T:P: S)	3:0:0	SEE Marks	50
Total Hours of Pedagogy	40	Total Marks	100
Credits	03	Exam Hours	3
Examination type (SEE)			

Course Outcomes (Course Skill Set)

After completing the course, the students will be able to

CO1: Apply the basic principles of electronics to solve analog and digital circuits.

CO2: Analyze and Identify a suitable electronic system for a given application.

CO3: Design the basic electronic circuits for a given specification to address engineering applications.

CO4: Involve in independent/team learning on recent trends in applied electronics and communicate with effective presentations and report

Module-1: 08 Hours

Basic Electronic devices: PN junction, Diode, Forward bias diode, Reverse biased diode, I-V Characteristics of diode, Diode approximations

Power Supplies –Block diagram, Half-wave rectifier, Full-wave rectifiers and filters, Voltage regulators, Output resistance and voltage regulation, Voltage multipliers.

Transistor: BJT structure and operation (NPN), circuit symbol, configurations, relation between transistor currents, BJT as a switch.

Amplifiers – Definition, Types of amplifier, gain, Input-Output Resistance, Multi-stage amplifier.

Module-2: 08 Hours

Operational amplifiers - Ideal op-amp; characteristics of ideal and practical op-amp; Practical opamp circuits: Inverting and non-inverting amplifiers, voltage follower, summer, subtractor, integrator, differentiator

Oscillators – Barkhausen criterion, Classification of oscillators, Ladder network oscillator, Wein bridge oscillator, Crystal oscillator (Only Concepts, working, and waveforms. No mathematical derivations).

Module-3: 08 Hours

Communication: Modern communication system scheme, Information source, and input transducer, Transmitter, Channel or Medium – Wired and Wireless, Noise, Receiver, Multiplexing, Types of communication systems.

Modulation Schemes: Amplitude Modulation and Frequency Modulation Introduction to Cellular Communication, Computer Communication Networks

Module-4: 08 Hours

Embedded Systems – Definition, Embedded systems vs general computing systems, Classification of Embedded Systems, Major application areas of Embedded Systems, Elements of an Embedded System, Core of the Embedded System, Microprocessor vs Microcontroller, RISC vs CISC

Sensors and Interfacing – Instrumentation and control systems, Transducers, Sensors, Actuators, LED, 7-Segment LED Display

Module-5: 08 Hours

Boolean Algebra and Logic Circuits: Binary numbers, Number Base Conversion, octal & Hexa Decimal Numbers, Complements (1's and 2's complement), Basic definitions, Axiomatic Definition of Boolean Algebra, Basic Theorems and Properties of Boolean Algebra, Boolean Functions, Canonical and Standard Forms, Other Logic Operations, Digital Logic Gates

Combinational logic: Introduction, Design procedure, Adders- Half adder, Full adder

Suggested Learning Resources: (Textbook/Reference Book):

I. Textbooks:

- Basic Electronics- Devices, circuits and IT fundamentals- By Santiram Kal- PHI, 2012
- 2. Op-amps and Linear Integrated Circuits, Ramakanth A Gayakwad, Pearson Education, 4th Edition
- 3. Digital Logic and Computer Design, M. Morris Mano, PHI Learning, 2008 ISBN-978-81-203-0417-8

II. Reference books:

- 1. Electronic Devices and Circuit Theory, R Nashelsky and L Nashelsky, 11th Edition, Pearson, 2012
- 2. D.P Kothari and I J Nagrath, Basic electronics, Second Edition, McGraw Hill Education Pvt ltd, 2018
- 3. John G. Proakis, Masoud Saleh, Fundamentals of Communication Systems, Second Edition, Pearson Educations, Inc., 2014

III. Web links and Video Lectures (e-Resources):

- 1. https://www.elsevier.com/books/basic-electronics/holbrook/978-0-08-006865-7
- 2. http://www.worldcat.org/title/basic-electronics/oclc/681543319
- 3. https://nptel.ac.in/courses/122106025
- 4. https://onlinecourses.swayam2.ac.in/nou23 ec06/preview

Teaching-Learning Process (Innovative Delivery Methods):

- 1. Technology Integration
- 2. Collaborative (Team) learning

3. Learning through simulation

Assessment Structure:

Component	Type of assessment	Max. Marks	Tota l	Reduce d Marks	Total	Min. Marks required for eligibility	Total Mark s
	Self - Learning (simulation)	10	10	10	10		
Theory	Test 1	40		20		20	50
	Test 2	40	80	20	40		50
	Test 3	40		20	40		
			50		20		
SEE	End Exam	100	0	50		35	50
	Grand	Total Ma	rks			40	100

Two best scores out of the three tests will be considered for CIE.

CIE methods /question paper is designed to attain the different levels of Bloom's taxonomy

as per the outcome defined for the course.

Semester End Examination:

- 1. Each unit consists of two full questions.
- 2. Five full questions to be answered

Continuous Comprehensive Assessments (CCA):

I. Simulation based Self-Learning

Proteus is an **Electronic Design Automation (EDA) software tool** widely used for simulating, designing, and testing electronic circuits without physical hardware. It supports analog, digital, and embedded system circuits. It provides schematic capture, circuit simulation, PCB layout design, and virtual testing tools like oscilloscopes and logic analyzers.

1. **Learning of Tool**: 10 Hours

2. **Design of experiment**: 10 Hours

3. Simulation in EDA tool: 10 Hours

4. **Demonstration and Documentation**: 20 Hours

II. List of Simulation Experiments for Self-learning

1. Half wave rectifier with and without capacitor filter

- 2. Voltage doubler
- 3. Voltage Tripler
- 4. Transistor as a switch
- 5. Demonstrating characteristics of transistor in CE configuration.
- 6. Op-amp circuits Inverting and Non-Inverting
- 7. Op-amp circuits Summing and Subtractor
- 8. Op-amp circuits Integrator and Differentiator
- 9. Simplification and realization of Boolean expression using basic logic gates
- 10. Simplification and realization of Boolean expression using universal gates

Self-Learning Evaluation Rubrics

Rubrics	Description	4	3	2	1
R1 (05)	Demonstrates an	Explains	Explains	Shows basic	Understandin
	understanding of	concepts	concepts	understanding	g is limited,
	electronics	clearly,	accurately with	of concepts but	with errors or
	systems and	accurately,	minor gaps in	lacks depth or	confusion
	Simulation tool	and with	detail	has some	
	(PO1, PO5)	insightful		inaccuracies	
		connections			
R2 (03)	Technical	report is	report is clear	report is	report is
	writing ability	clear,	and specific but	understandable	unclear or too
	(Report)	specific, and	lacks strong	but somewhat	broad
	(PO9)	well	justification	vague or	
		justified		incomplete	
		with context			
R3 (02)	Individual	Active	Good	Fair	Minimal
	contribution to	participation	participation	participation	participation
	the entire project			_	
	(PO8)				

Course Title: Introduction	To Mechanical Engineering	Semester	I/II
Course Code	25ME1ESIME/25ME2ESIME	CIE Marks	50
Teaching Hours/Week (L:T:P: S)	3-0-0	SEE Marks	100
Total Hours of Pedagogy		Total Marks	100
Credits	03	Exam Hours	3
Examination type (SEE)			

Course Outcomes (Course Skill Set)

CO1: Describe & discuss fundamental principles of Mechanical Engineering as applied in the domains of machining, thermal, automotive and futuristic technologies.

CO2: Differentiate and compare among various mechanical systems (such as energy, metal joining, IC engines etc.)

CO3: Determine performance-related parameters for IC engines.

Module-1: 8 Hours

Introduction to Mechanical Engineering:

Role of Mechanical Engineering in Industries and Society- Emerging Trends and Technologies in different sectors such as Energy, Manufacturing, Automotive, Aerospace, and Marine sectors and contribution to GDP (Not for CIE/SEE).

Energy Sources and Power Plants:

Introduction and application of energy sources, Construction and working of Hydel power plant, Solar power plant (Helio-thermal process, flat and parabolic collectors), Wind power plant, and Biogas Plant, Environmental issues like Global warming and ozone depletion

Module-2: 8 Hours

Fundamentals of Machine Tools and Operations:

(Machine tool sketches are not included for CIE/SEE)

Working principle of Lathe, Milling and Drilling machine tools.

Lathe Operations: Turning, Facing, Taper Turning and Knurling,

Drilling Operation: drilling, boring, and reaming. Milling Operation: Plane milling and slot milling.

Modern Manufacturing Tools and Techniques:

CNC: Introduction, components of CNC, advantages and applications of CNC.

3D printing: Introduction and steps involved

Module-3: 8 Hours

Introduction to IC Engines: Classification, Working of 4-Stroke (petrol and diesel) engines, numerical on Power and Mechanical efficiency calculations, applications.

Insight into future mobility technology: Introduction to Electric and Hybrid Vehicles, Components of Electric and Hybrid Vehicles (block diagram only). Advantages and disadvantages of EVs and Hybrid vehicles.

Module-4: 8 Hours

Materials and its Industrial Applications: (Definitions, types and list of applications only)

Metals- Ferrous: Tool steels and stainless steels, Non-ferrous: Aluminium.

Ceramics- Glass, optical fibre glass, cermet's.

Composites- Fibre reinforced composites, Metal matrix composites

Smart materials: Piezoelectric materials, shape memory alloys, semiconductors and super-insulators.

Metal Joining Processes:

Soldering, Brazing and Welding: Classification, definitions and principles of operation. Procedure followed in soldering, brazing and welding. Brief description of arc welding.

Module-5: 7 Hours

Introduction to Robotics and Mechatronics:

Robot anatomy, Joints & links, common robot configurations. Applications of Robotics.

Concept of open-loop and closed-loop control systems, examples of Mechatronic systems.

Automation in Industry:

Definition, types - fixed, programmable and flexible automation, basic elements with block diagrams and advantages

Drones, UAV, Types of UAV, fixed wing and multi-rotors, Applications

Suggested Learning Resources: (Textbook/Reference Book):

I. Textbooks:

- 1. Elements of Mechanical Engineering, K R GopalaKrishna, Subhash Publications, 2019.
- 2. Elements of Mechanical Engineering, V. K. Manglik, PHI Learning, 2019

II. Reference books:

- 1. Textbook of Elements of Mechanical Engineering, S. Trymbaka Murthy, Medtech, 2019.
- 2. Elements of Mechanical Engineering, Kestoor Praveen, Suggi Publishing, 2019
- 3. Thermal Management in Electronic Equipment, HCL Technologies, 2010
- 4. Fundamentals of Robotics: Analysis and Control, Robert J. Schilling, Pearson Education (US).

III. Web links and Video Lectures (e-Resources):

- 1. https://www.tlv.com/global/TI/steam-theory/principal-applications-for-steam.html
- 2. https://www.forbesmarshall.com/Knowledge/SteamPedia/About-

Steam/Fundamental-Applications-of-Steam

- 3. https://rakhoh.com/en/applications-and-advantages-of-steam-in-manufacturing-and-process-industry/
- 4. Videos | Makino (For Machine Tool Operation)
- 5. Mechanisms and mechanical devices 4e.pdf (e-book- Mechanical Linkages)

Teaching-Learning Process (Innovative Delivery Methods):

- 1. Adopt different types of teaching methods to develop the outcomes through PowerPoint presentations and Video demonstrations or Simulations.
- 2. Arrange visits to show the live working models other than laboratory topics.
- 3. Adopt collaborative (Group Learning) Learning in the class.
- 4. Adopt Problem Based Learning (PBL), which foster student analytical skills and develops thinking/ analyzing skills

Assessment Structure:

Component	Type of assessment	Max. Marks	Total	Reduced Marks	Total	Min. Marks required for eligibility	Total Marks
	Quiz/AAT	10	10	10			50
CIE –	Test 1	40		20	50	20	
Theory	Test 2	40		20	50	20	50
	Test 3	40		20			
SEE	End Exam	10	0	50			50
	Grand	d Total M	arks				100

Semester End Examination: (QP PATTERN)

• Answer five full questions selecting one from each module.

COs and POs Mapping

COs	POs											
COS	1	2	3	4	5	6	7	8	9	10	11	12
CO1	3						2					
CO2	3						2					
CO3	2											

Course Title: Essentials of	f Information Technology	Semester	I/II
Course Code	25CS1ESEIT/25CS2ESEIT	CIE Marks	50
Teaching Hours/Week (L:T:P: S)	3-0-0	SEE Marks	50
Total Hours of Pedagogy	39	Total Marks	100
Credits	03	Exam Hours	3
Examination type (SEE)			

Course Outcomes (Course Skill Set)

At the end of the course, the student will be able to:

CO1: Illustrate different information representation and manipulation schemes

CO2: Use of Information Technology (IT) infrastructure for effective communication

CO3: Apply basic software engineering concepts for Website and application development

CO4: Develop queries for quick insert, access and updating of structured information

CO5: Identify role of cybersecurity and ethics issues in Information Technology (IT)

Module-1: 8 Hours

Data Storage: Bits and Their Storage, Main Memory, Mass Storage, Representing Information as Bit Patterns, The Binary System, Storing Integers, Storing Fractions.

Data Manipulation: Computer Architecture, Machine Language, Program Execution, Arithmetic/Logic Instructions, Communicating with Other Devices.

Textbook 1: Chapter-1 (1.1-1.7), Chapter-2 (2.1-2.5)

Module-2: 8 Hours

Operating Systems: The History of Operating Systems, Operating System Architecture, Coordinating the Machine's Activities, Handling Competition Among Processes, Security.

Algorithms: The Concept of an Algorithm, Algorithm Representation, Algorithm Discovery.

Textbook 1: Chapter-3, Chapter-5 (5.1-5.3)

Module-3: 8 Hours

Networking and the Internet: Network Fundamentals, The Internet, The World Wide Web, Internet Protocols, Security.

Cybersecurity: Overview—What is Cybersecurity?, Brief History of Cybersecurity Events, The Basic Information Security Model, Cyber Hygiene, Teams in Cybersecurity.

Ethical Issues in Information Technology: Overview, Ownership Rules, Ethics and Online Content.

Textbook 1: Chapter-4

Textbook 2: Chapter-16, Chapter-17

Module-4: 8 Hours

Software Engineering: The Software Engineering Discipline, The Software Life Cycle, Software

Engineering Methodologies, Modularity, Tools of the Trade.

Database Systems: Database Fundamentals, The Relational Model.

Textbook 1: Chapter-7 (7.1-7.5), Chapter-9 (9.1-9.2)

Module-5: Hours

Introduction to HTML and Website Development: What is HTML?, Cascading Style Sheets (CSS), Website Design and Storyboarding, Structure of a Website.

Computer Graphics: The Scope of Computer Graphics, Overview of 3D Graphics, Modeling, Rendering.

Textbook 2: Chapter-12.

Textbook 1: Chapter-10 (10.1-10.4)

Suggested Learning Resources: (Textbook/Reference Book):

I. Textbooks:

- J. Glenn Brookshear and Dennis Brylow, Computer Science: An Overview, 12th Edition, Pearson Education Limited, 2017
- Roy, Shambhavi; Daniel, Clinton; and Agrawal, Manish, "Fundamentals of Information Technology", Digital Commons at The University of South Florida (2023)

II. Reference books:

- V. Rajaraman, "Introduction to Information Technology", Third Edition, PHI Learning, 2018
- 2. "INTRODUCTION TO INFORMATION TECHNOLOGY", 2ND EDN, Pearson, 2012
- 3. Pelin Aksoy, Information Technology in Theory, First Edition, Cengage

III. Web links and Video Lectures (e-Resources):

- 1. Information Technology: https://onlinecourses.swayam2.ac.in/cec20 cs05/preview
- 2. Computer Organization and Architecture: https://nptel.ac.in/courses/106103068
- 3. Introduction To Internet: https://nptel.ac.in/courses/106105084

List of Lab activities:

1. Locate the templates available for a word processing application that you have access to. Search the templates for a "Resume". Review the "Resume" template of your choice. Identify all the word processing features used in the "Resume" template. Use the "Resume" template to create your own resume. As you fill out the template, be sure to use the application to check your spelling and grammar. Verify the print layout of your

resume. Save the resume and print a copy

- 2. Consider the following data: Student First Name, Student Last Name, Student Age, Student Grade, Student School, Telephone Number, Sport (Volleyball, Basketball, Softball, Baseball, Soccer, or Football). Considering the data required in the list above, create a spreadsheet and add at least 10 rows of data to your spreadsheet. Once you add all the data to the spreadsheet, calculate the average age of the students under each category of sports
- 3. Create a Power point presentation that meets the requirements of marketing of brandnew product. Apply a theme, background, and professional layout for chosen product
- 4. Create a Web page with basic HTML elements (tags). Insert lists, images, drop down lists and tables. Apply CSS properties for the web page
- 5. Create a relational database model (MS Access or any other) for storing information about courses taken by students. Develop suitable queries to insert data onto tables, update fields, delete rows and query relevant information from the database model

Assessment Structure:

Activity -1: Quiz (05 Marks)

Activity -2: Self-Learning Activity - Practical Assignment (Individual) (Marks- 05)

<u>Instruction:</u> Students must demonstrate the solutions to the course instructor for the below list of experiments and submit the record containing method (steps), program (if applicable), document (if applicable) and results/output

Course Title: Engineering Mechanics		Semester	I
Course Code	25CV1PSENM	CIE Marks	50
Teaching Hours/Week (L:T:P: S)	3:0:1:0	SEE Marks	50
Total Hours of Pedagogy	40	Total Marks	100
Credits	03	Exam Hours	3
Examination type (SEE)			

Course Outcomes (Course Skill Set)

After completing the course, the students will be able to

CO1: Apply the concepts of force and moments to solve problems related to resultant and equilibrium of coplanar force system.

CO2: Apply the principles of friction to solve problems related the concepts of friction.

CO3: Locate the centroid of plane laminas using first principles

CO4: Compute the second moment of area of laminas.

CO5: Analyze coplanar force systems by analytical and experimental methods

CO6: Identify and understand the properties of various construction materials.

Module-1: Coplanar force system: Resultant of Forces

08 Hours

Basic dimensions and units, Idealization, Force, Classification of force system, Composition and resolution of forces, Principle of transmissibility of a force, , Free body diagrams, Resultant of coplanar concurrent and non-concurrent force system, Moment, Couple and Characteristics of couple, Varignon's theorem: Numerical Examples.

Module-2: Coplanar force system: Equilibrium of Forces

08 Hours

Conditions of static equilibrium, Equilibrium of coplanar concurrent force systems, Lami's theorem, Equilibrium of coplanar non-concurrent force system, Numerical examples. Types of supports, loadings and beams, Concept of statically determinate and indeterminate beams. Support reactions for statically determinate beams subjected to various loadings: Numerical examples.

Module-3: Friction 08 Hours

Introduction, Types of friction, Concept of static friction, Kinetic (Dynamic) friction, Laws of friction, Angle of repose, Cone of friction, Equilibrium of blocks on horizontal and inclined plane, Ladder friction: Numerical examples.

Module-4: Centroid 08 Hours

Introduction, definitions of centroid and centre of gravity. Axes of symmetry, Locating the centroid of square, rectangle, triangle, circle, semicircle, quadrant and sector of a circle using method of integration, Centroid of composite areas and simple built up sections: Numerical examples.

Module-5: Moment of Inertia of plane Areas:

08 Hours

Introduction, Moment of inertia about an axis, Parallel axes theorem, Perpendicular axes theorem, Polar moment of inertia, Radius of gyration, Moment of inertia of square, rectangular, triangular and circular areas from the method of Integration, Moment of inertia of composite areas and simple built-up sections: Numerical Examples.

Suggested Learning Resources:

I. Textbooks:

- 1. Bansal R. K., Rakesh Ranjan Beohar and Ahmad Ali Khan, Basic Civil Engineering and Engineering Mechanics, 3rd Edition, 2015, Laxmi Publications, ISBN: 9789380856674.
- 2. Kolhapure B K, Elements of Civil Engineering and Engineering Mechanics, 11th Edition, 2018, Eastern Book Promoters Belgaum [EBPB], ISBN: 5551234003896
- 3. Ramamrutham.S, Engineering Mechanics, Dhanpat Rai Books, 2013, ISBN: 9789352164271.
- 4. M. L. Gambhir: Concrete Manual: Dhanpat Rai & sons New Delhi, ISBN-135551234001965.
- 5. Soil Mechanics and foundation Engineering by B C Punmia, Ashok kumar jain, Arun kumar jain, 18th edition, 2023, Laxmi Publications New Delhi.

II. Reference books:

- 1. Beer F.P. and Johnston E. R., Mechanics for Engineers: Statics and Dynamics, 4th Edition, 1987, McGraw Hill, ISBN: 9780070045842
- 2. Meriam J. L. and Kraige L. G, Engineering Mechanics-Statics, Vol I–6th Edition, 2008, Wiley publication.
- 3. Irving H. Shames, Engineering Mechanics-Statics and Dynamics, 4th Edition, 2002, Prentice-Hall of India(PHI).
- 4. Hibbler R. C., Engineering Mechanics: Principles of Statics and Dynamics, 2017, Pearson Press, New Delhi.
- 5. Timoshenko S, Young D. H., Rao J. V., Sukumar Patil, Engineering Mechanics, 5th Edition, 2017, McGraw Hill Publisher, ISBN: 9781259062667
- 6. Bhavikatti S S, Engineering Mechanics, 4th Edition, 2018, New Age International Publications.
- 7. Reddy Vijaykumar K and Suresh Kumar K, Engineering Mechanics, 3rd Edition 2013, BS Publications.
- 8. J K Gupta and S K Gupta, Engineering Mechanics and Applied Mechanics, first edition, 2021,

Cengage learning. ISBN: 9789353505851.

Web links and Video Lectures (e-Resources):

1. NPTEL: Introduction to Civil Engineering Profession,

https://nptel.ac.in/courses/105106201

2. NPTEL: Engineering Mechanics,

https://nptel.ac.in/courses/112103108

Laboratory Component

I. PART -A: Conventional Experiments

- 1. Verification of Lami's Theorem.
- 2. Equilibrium of concurrent forces.
- 3. Parallel force system- Simply supported beam.
- 4. Verification of Varignon's theorem.
- 5. Specific Gravity of a) Fine aggregates. b) Coarse aggregates. c) Cement. d) Soil.
- 6. Sieve analysis of soil-Graphical representation of the gradation curve
- 7. Visual identification of building materials: Bricks, Stones, Tiles, M-Sand, Bitumen, Fly-Ash, GGBS, Steel Bars of Various Sizes.

II. PART -B: Typical Open-Ended Experiments

Open-ended experiments are a type of laboratory activity where the outcome is not predetermined, and students are given the freedom to explore, design, and conduct the experiment based on the problem statements as per the concepts defined by the course coordinator. It encourages creativity, critical thinking, and inquiry-based learning.

- 1. Support Reactions.
- 2. Field tests on cement.
- 3. Particle size distribution.
- 4. Grading of aggregates.

Teaching-Learning Process (Innovative Delivery Methods):

The following are sample strategies that educators may adopt to enhance the effectiveness of the teaching-learning process and facilitate the achievement of course outcomes.

- 1. Chalk and talk.
- 2. PowerPoint presentation, Site/ Laboratory visits for materials and building component demonstrations.
- 3. Flipped Classroom
- 4. NPTEL and other videos for theory topics
- 5. Individual teachers can device innovative pedagogy to improve teaching-learning.

Assessment Structure:

Component	Type of Assessment	Max. Marks	Reduced Marks	Total	Min. Marks for Eligibility	Total marks		
	Quiz / AAT	10	5	25				
CIE- Theory	Test 1	40	10		10			
	Test 2	40	10					
CIE- Lab	Record and Performanc e	10	10	25	10	50		
	Lab test	15	15					
CIE			50	20				
SEE	Semester End Exam	100	50		35	50		
Grand Total					100			

The assessment in each course is divided equally between Continuous Internal Evaluation (CIE) and the Semester End Examination (SEE), with each carrying 50% weightage.

- To qualify and become eligible to appear for SEE, in the CIE, a student must score at least 40% of 50 marks, i.e., 20 marks, combined from both Theory and Lab component, ensuring a minimum of 10 marks is scored individually in both Theory and Lab component.
- To pass the SEE, a student must score at least 35% of 100 marks.

Not with standing the above, a student is considered to have **passed the course**, provided the combined total of CIE and SEE is at least 40 out of 100 marks.

Suggested Learning Activities may include (but are not limited to):

- 1. Case Study Presentation
- 2. Assignments
- 3. Quiz
- 4. Course Project
- 5. Any other relevant and innovative academic activity
- 6. Use of MOOCs and Online Platforms

Suggested Innovative Delivery Methods may include (but are not limited to):

- 1. Case-Based Teaching
- 2. Flipped Classroom
- 3. Problem-Based Learning (PBL)
- 4. ICT-Enabled Teaching

Course Title: Basics of Electrical Engineering		Semester	I
Course Code	25EE1PSBEE	CIE Marks	50
Teaching Hours/Week (L:T:P: S)	3:0:2:0	SEE Marks	50
Total Hours of Pedagogy	40	Total Marks	100
Credits	03	Exam Hours	3
Examination type (SEE)			

Course Outcomes (Course Skill Set)

At the end of the course, the student will be able to:

CO1: Apply the basic laws for analysis of DC circuits and Electromagnetism.

CO2: Apply Network theorems for solving DC circuits

CO3: Analyse the single-phase and three phase AC circuits.

CO4: Analyse electricity billing, domestic wiring and safety measures against electricity.

CO5: Conduct the experiments and study the performance of AC and DC circuits

Engage in individual/team work to make effective technical presentation on electrical concepts and communicate effectively to the audience

Module-1: 8 Hours

DC circuits: Ohm's law and Kirchhoff's laws, analysis of series, parallel and series-parallel circuits. Power and energy. (Branch Current method only), Star-delta transformation., Source transformation, numerical.

Electromagnetism: Faraday's laws of Electromagnetic induction, Lenz's law, dynamically and statically induced emf, Fleming's right-hand rule, Fleming's left-hand rule. Inductance and mutual inductance, coefficient of coupling, energy stored and its applications, numerical.

Module-2: 8 Hours

Network Theorem: Thevenin's theorem, Superposition theorem, Norton's Theorem, Maximum Power Transfer Theorem. Numerical.

Module-3: 8 Hours

Single-phase Circuits: Generation of sinusoidal voltage, frequency of generated voltage, Expression of average value, RMS value, form factor and peak factor of sinusoidal voltage and current. Phasor representation of alternating quantities. Analysis of R, L and C circuits. Series and parallel R-L, R-C and R-L-C circuits with phasor diagrams, calculation of real power, reactive power, apparent power, and power factor, illustrative examples.

Module-4: 8 Hours

Three- phase Circuits: Generation of three-phase system, definition of phase sequence, star and delta (mesh) connections, relation between phase and line values of voltages and of currents of star and delta connections, considering the phasor diagram. Definition of balanced and unbalanced source and load. Power, reactive power and power factor. Problems on balanced loads. Measurement of 3-phase power by 2-wattmeter method. Expression of power factor in terms wattmeter readings. Effect of power factor on wattmeter readings. Comparison between single phase and three-phase systems

Module-5: 8 Hours

Domestic Wiring: Wiring for two-way and three-way control of load.

Domestic Electricity Bill: Power-rating of household connected loads. Sanctioned Load. Practical unit of measuring energy, energy expressed for commercial purposes - Unit, its definition.

Electricity bill [as per Electricity Supply Companies (escom)]: Tariff method considered: two-part tariff. Particulars considered for billing: sanctioned load and units consumed. Calculation of electricity bill for domestic consumers.

Equipment Safety Measures: Working principles of fuse and miniature circuit breaker (MCB), the merits and demerits of fuse and MCB. Definition for current rating, fusing current and fusing factor.

Personal safety measures: Electric shock, possible effects of shocks. Safety precautions to avoid personal shock while dealing with electricity. Earthing: Pipe and plate.

Suggested Learning Resources: (Textbook/Reference Book):

I. Textbooks:

- 1. A textbook of Electrical Technology by B.L. Theraja, Volume-1, S Chand and Company, Reprint Edition 2014. [Covers modules 1 to 4]
 - 2. Basic Electrical Engineering, D.C. Kulshreshtha, McGraw Hill, 2nd Edition, 2024. [Covers all modules]

II. Reference books:

- 1. Basic Electrical Engineering, D. P. Kothari and I. J. Nagrath, McGraw Hill 2nd edition, 3rd Reprint 2024.
- 2. Principles of Electrical Engineering & Electronics by V. K. Mehta, Rohit Mehta, S. Chand and Company Publications, 2nd edition, 2015.
- 3. Electrical Technology by E. Hughes, Pearson, 12th Edition, 2016.
- 4. Basic Electrical and Electronics Engineering, S.K Bhattacharya, et al, Pearson. 2nd edition, 2017.
- 5. Handbook of Electrical Engineering formulae, Harish C Rai, CBS Publications, 2018.

III. Web links and Video Lectures (e-Resources): www.nptel.ac.in

- 1. Principle of Electrical Sciences, Prof Sanjay Agrawal, Indira Gandhi National Open University.
- 2. Electricity and Electrical Wiring, Dr. Antara Mahanta Barua, Krishna Kanta Handiqui State Open University, Guwahati.

List of Lab activities:

Note:

- 1. The laboratory syllabus consists of PART-A and PART-B. While PART-A has 6 conventional experiments, PART-B has 6 typical open-ended experiments. The maximum marks for laboratory course is 100.
- 2. Both PART-A and PART-B are considered for CIE.
- 3. Students have to answer 1(one) question from PART-A and 1(one) question from PART-B.
- 4. PART-A is evaluated for 70 marks out of the maximum 100 marks.
- 5. The open-ended question shall be evaluated for 30 marks.

PART – A CONVENTIONAL EXPERIMENTS

- 1. Verification of Ohm's law and Kirchhoff's laws.
- 2. Measurement of low range resistance using voltmeter-ammeter method. Verification of resistance value using multimeter/LCR meter.
- 3. Measurement of earth's resistance by 3-electrode method.
- 4. Measurement of resistance, inductance, impedance and power factor using voltmeter, ammeter and wattmeter in single-phase AC circuits.
- 5. Measurement of three-phase power of an inductive load by 2-wattmeter method, when the load is (a) star connected and (b) delta connected. Calculation of resistance, reactance, impedance and power factor.
- 6. Verify Superposition Theorem for a given circuit.

PART – B TYPICAL OPEN-ENDED EXPERIMENTS

Open-ended experiments are a type of laboratory activity where the outcome is not predetermined and students are given the freedom to explore, design, and conduct the experiment based on the problem statements as per the concepts defined by the course coordinator. It encourages creativity, critical thinking, and inquiry-based learning.

- 1. Creation of short circuit to determine the time taken by a fuse of different length. Documenting the test data and the conclusions.
- 2. Trouble shooting experiments in simple DC circuits. The trouble may be due to loose connection, faulty component leading to open circuits or short circuits. Detection of fault and the reasons for that

and conclusion.

- 3. Measurement of voltage between line and neutral, ground and line, ground and neutral in respect of heathy and unhealthy 3-pin socket. Conclusions arrived for the faulty wiring. Allowable ground voltage.
- 4. Wiring an appropriate electric circuit, understanding the basic principle used for 2-way and 3-way control of load.
- 5. Only three ammeters and standard resistance are available in the laboratory. Using the same measure the single phase power consumed by an inductive load.
- 6. Only three voltmeters and standard resistance are available in the laboratory. Using the same measure the single phase power consumed by an inductive load.

Teaching-Learning Process (Innovative Delivery Methods):

The following are sample strategies that educators may adopt to enhance the effectiveness of the teaching-learning process and facilitate the achievement of course outcomes.

- 1. Flipped Classroom
- 2. Problem-Based Learning (PBL)
- 3. Case-Based Teaching
- 4. Simulation and Virtual Labs
- 5. Partial Delivery of course by Industry expert/ industrial visits
- 6. ICT-Enabled Teaching
- 7. Role Play

Assessment Structure:

Component	Type of assessme nt	Max. Mark s	Total	Reduced Marks	Total	Min. Marks required for eligibility	Total Marks
CIE – Theory	Quiz/AA T	10	10	5		10	
	Test 1 Test 2 Test 3	40 40 40	80 (Best 2 of 3 tests)	20	25		5 0
CIE – Lab	Record Lab Test - Write up, Conduct ion, Results, Viva CIE	10 15	25	10 15	25	20	50
CEE		100					50
SEE	End Exam	100		50		35	50
Grand Total Marks						40	100

Two best scores out of the three tests will be considered for CIE. CIE methods/question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.

Semester End Examination:

- Ten questions to be set; two questions from each unit with internal choice.
- Student should answer one question from each unit

Continuous Comprehensive Assessments (CCA):

CCA will be conducted for a total of 5 marks. It is recommended to include any one learning activity aimed at enhancing the holistic development of students. This activity should align with course objectives and promote higher-order thinking and application-based learning.

Learning Activity -1: (Marks- 5)

(1	Rubrics for Learning Activity 1, Maximum marks:5 (Based on the nature of learning activity, design the rubrics for each activity)									
Activity type	Performan ce Indicator	Excellent	Very Good	Good	Fair	Needs Improvement				
Presenta tion/ Seminar (5)	PO10.1: Communi cate effectivel y both in written and oral form. (5)	Presents ideas confidently, clearly, and engagingly with excellent audience interaction. (5)	Presents clearly the topic contents but falters while delivering the content. (4)	Presents the contents properly but struggles to deliver. (3)	Presents imprecise contents and finds difficulty in delivery.(2)	Presents imprecise contents and fails to deliver. (1)				
	PO8.1: Demonstra te profession al and ethical behaviour. (5)	Adheres to high ethical standards, shows strong professional conduct. (5)	Mostly adheres to ethical standards with minor lapses. (4)	Understa nds ethics but inconsist ently applies them. (3)	Shows limited awareness of ethical standards (2)	Shows disregard to ethics and professionali sm (1)				

Course Title: Fundamentals of Engin	Semester	I/II	
Course Code	25EC1PSECE/25EC2PSECE	CIE Marks	50
Teaching Hours/Week (L:T:P: S)	3:0:2:2	SEE Marks	50
Total Hours of Pedagogy	120	Total Marks	100
Credits	04	Exam Hours	3
Examination type (SEE)			

Course Outcomes (Course Skill Set)

After completing the course, the students will be able to

CO1: Apply the basic principles of Electronics to comprehend Analog and Digital circuits.

CO2: Analyze the characteristics and performance parameters of basic Electronic devices and Circuits.

CO3: Design Electronic Circuits for the given basic applications.

CO4: Conduct hardware-based experiments to design, implement, and validate the performance of analog and digital circuits.

CO5: Involve in independent and team learning by exploring modern Tool or Software to simulate electronic circuits, and document the results.

Module-1: Semiconductor Diode & Applications

08 Hours

Diode: Working principle Characteristics, Parameters and Specifications, Shockley's Equation. Half-Wave and Bridge Rectifier: Working principle and parameters Ripple Factor and Efficiency Derivations, Peak Inverse Voltage, shunt Capacitor Filter. **Zener Diode:** Zener Diode Characteristics and ratings, Application as Voltage Regulator, Regulated Power Supply.

Module-2: Bipolar Junction Transistors

08 Hours

Introduction, BJT Voltages & Currents, BJT Amplification, Common Base and Common Emitter Characteristics, BJT Biasing, Fixed Biasing and Voltage Divider, DC Load line and Bias point, Transistor as a Switch. **Feedback:** Feedback Principle, types of feedback: Positive and Negative feedback, advantages of negative feedback

Module-3: Operational Amplifiers

08 Hours

Introduction, The Operational Amplifier, Block Diagram Representation of Typical Op-Amp, Schematic Symbol, Op-Amp parameters - Gain, input resistance, Output resistance, CMRR, Slew rate, Bandwidth, input offset voltage, input bias Current and Input Offset Current, The Ideal Op-Amp, Equivalent Circuit of Op-Amp, Open Loop Op-Amp, Closed Loop Configurations: Inverting and Non-Inverting Amplifiers. Basic Op-Amp Applications: Summing, scaling and averaging circuit, subtractor, Voltage Follower, Basic Integrator and Differentiators.

Module-4: Communication

08 Hours

Modern communication system scheme, Information source, and input transducer, Transmitter, Channel or Medium –Wired and Wireless, Noise, Receiver, Multiplexing, Types of communication systems. Types of modulation-: Amplitude Modulation, Frequency and Phase Modulation, Waveforms. Applications: Introduction to Cellular Communication, Computer Communication Networks.

Module-5: Digital Electronics and Number Systems

08 Hours

Number Systems (Binary, Octal, Decimal and Hexadecimal), Number Base Conversion, 1's and 2's Complement Operations, Binary Addition and Subtraction, Binary Logic. **Boolean Algebra:** Basic Definitions, Basic Theorems and Properties of Boolean Algebra, Boolean Functions, Canonical and Standard Forms, Digital Logic Gates, NAND And NOR as Universal Gates,

Applications: Combinational logic, Design procedure, Adders- Half adder, Full adder

Sequential logic: Introduction, flip-flops- SR, D, T and JK flip-flops, 2-bit Binary Counters

Suggested Learning Resources: (Textbook/Reference Book):

I. Textbooks:

- 1. Basic Electronics- Devices, circuits and IT fundamentals- By Santiram Kal- PHI, 2012
- 2. **Op-amps and Linear Integrated Circuits,** Ramakanth A Gayakwad, Pearson Education, 4th Edition
- 3. **Digital Logic and Computer Design,** M. Morris Mano, PHI Learning, 2008 ISBN-978-81-203-0417-8

II. Reference books:

- 1. **Electronic Devices and Circuit Theory**, R Nashelsky and L Nashelsky, 11th Edition, Pearson, 2012
- 2. D.P Kothari and I J Nagrath, **Basic electronics**, Second Edition, McGraw Hill Education Pvt ltd, 2018
- 3. John G. Proakis, Masoud Saleh, **Fundamentals of Communication Systems**, Second Edition, Pearson Educations, Inc., 2014

III. Web links and Video Lectures (e-Resources):

- 1. https://www.elsevier.com/books/basic-electronics/holbrook/978-0-08-006865-7
- 2. http://www.worldcat.org/title/basic-electronics/oclc/681543319
- 3. http://nptel.ac.in/courses/117103063/
- 4. https://swayam.gov.in/course/3595-basic-electronics

Teaching-Learning Process (Innovative Delivery Methods):

- 1. Technology Integration
- 2. Collaborative (Team) learning
- 3. Hands-on experience.
- 4. Learning through hardware components.

Assessment Structure:

Component	Type of assessment	Max. Marks	Total	Reduced Marks	Total	Min. Marks required for eligibility	Total Marks
TI	Self - Learning (simulation)	10	10	05	05	10	
Theory	Test 1	40		10		10	50
	Test 2	40	80	10	20		
	Test 3	40		10			
Lab	CIE	10	10	10	25	10	
Lau	Test	15	15	15	23	10	
	CIE	•	•	50		20	
SEE	End Exam	10	0	50		35	50
	Grand	Total Ma	rks		•	40	100

Two best scores out of the three tests will be considered for CIE.

CIE methods /question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.

Semester End Examination:

- 1. Each module consists of two full questions.
- 2. Five full questions to be answered, selecting one full question from each module

Continuous Comprehensive Assessments (CCA):

Simulation based Self-Learning

I. Proteus is an Electronic Design Automation (EDA) software tool widely used for simulating, designing,

and testing electronic circuits without physical hardware. It supports analog, digital, and embedded system

circuits. It provides schematic capture, circuit simulation, PCB layout design, and virtual testing tools like oscilloscopes and logic analyzers.

1. **Learning of Tool**: 10 Hours

Design of experiment: 10 Hours
 Simulation in EDA tool: 10 Hours

4. **Demonstration and Documentation**: 20 Hours

II. List of Simulation Experiments for Self-learning

- 1. Half wave rectifier with and without capacitor filter
- 2. +5V power supply unit
- 3. Transistor as an amplifier

- 4. Demonstrating characteristics of transistor in CB configuration.
- 5. Op-amp circuits Summing and Subtractor
- 6. Op-amp circuits Integrator and Differentiator
- 7. Simplification and realization of Boolean expression using basic logic gates
- 8. Simplification and realization of Boolean expression using universal gates
- 9. SR and D Flip flop
- 10. T and JK Flip flop
- 11. 2-bit Binary Counter

Self-Learning Evaluation Rubrics

Rubrics	Description	4	3	2	1
R1 (05)	Demonstrates an	Explains	Explains	Shows basic	Understanding
	understanding of	concepts	concepts	understanding	is limited,
	electronics	clearly,	accurately with	of concepts but	with errors or
	systems and	accurately,	minor gaps in	lacks depth or	confusion
	Simulation tool	and with	detail	has some	
	(PO1, PO5)	insightful		inaccuracies	
		connections			
R2 (03)	Technical writing	report is	report is clear	report is	report is
	ability (Report)	clear,	and specific but	understandable	unclear or too
	(PO9)	specific, and	lacks strong	but somewhat	broad
		well	justification	vague or	
		justified		incomplete	
		with context			
R3 (02)	Individual	Active	Good	Fair	Minimal
	contribution to the	participation	participation	participation	participation
	entire project				
	(PO8)				

List of Lab activities:

PART – A CORE/BASIC HARDWARE EXPERIMENTS

- 1. Measurement of Amplitude, Time Period, and Frequency using CRO
- 2. Study of V-I Characteristics of a PN Junction Diode
- 3. Design and Testing of a Bridge Rectifier with and without Filter
- 4. Investigation of Inverting and Non-Inverting Op-Amp Configurations
- 5. Verification of Truth Tables of Basic Logic Gates
- 6. Verification of De-Morgan's Laws using Logic Gates
- 7. Design and Implementation of Half Adder and Full Adder Circuits

PART – B OPEN ENDED HARDWARE/ SIMULATION EXPERIMENTS

- 1. Analysis of BJT Characteristics in Common Emitter Configuration.
- 2. Verification of BJT Operation as a Switching Device.
- 3. Implementation of Boolean Expressions using Logic Gates.
- 4. Testing of Op-Amp as Voltage Follower and Weighted Summer with Waveform Analysis.

Course Title: Structured Programming in C		Semester	I/II
Course Code	25CS1PSSPC/25CS2PSSPC	CIE Marks	50
Teaching Hours/Week (L:T:P: S)	3:0:1	SEE Marks	50
Total Hours of Pedagogy	40 Hours	Total Marks	100
Credits	04	Exam Hours	3
Examination type (SEE)	Theory		

Course Outcomes (Course Skill Set)

At the end of the course, the student will be able to:

CO1: Understand fundamental programming concepts and develop structured and error-free C programs.

CO2: Implement logical solutions using control structures, arrays, and functions to solve basic computational problems.

CO3: Develop modular and reusable programs using user-defined functions and recursion techniques.

CO4: Organize data efficiently using pointers, structures, and unions.

Module-1: An Overview of C, Expressions, Console I/O

08 Hours

Algorithm and Flowchart. A Brief History of C, C Is a Middle-Level Language, C Is a Structured Language, C Is a Programmer's Language, Compilers Vs. Interpreters, The Form of a C Program, The Library and Linking, Separate Compilation, Compiling a C Program, C's Memory Map. The Basic Data Types, Modifying the Basic Types, Identifier Names, Variables, The Four C Scopes, Type Qualifiers, Storage Class Specifiers, Variable Initializations, Constants, Operators, Expressions. Reading and Writing Characters, Reading and Writing Strings, Formatted Console I/O, Printf(), Scanf()

Textbook 1: Chapter 1,2,8 & Textbook 2: Chapter 1

Module-2: Statements 08 Hours

True and False in C, Selection Statements, Iteration Statements, Jump Statements, Expression Statements, Block Statements.

Textbook1: Chapter 3

Module-3: Arrays, Strings and Pointers

08 Hours

Single-Dimension Arrays, Generating a Pointer to an Array, Passing Single-Dimension Arrays to Functions, Strings, Two-Dimensional Arrays, Multidimensional Arrays, Array Initialization, Variable - Length Arrays.

What Are Pointers?, Pointer Variables, The Pointer Operators, Pointer Expressions, Pointers and Arrays, Multiple Indirection, Initializing Pointers.

Textbook1: Chapter 4,5

Module-4: Functions 08 Hours

The General Form of a Function, Understanding the Scope of a Function, Function Arguments, argc and argv—Arguments to main(), The return Statement, What Does main() Return?, Recursion, Function

Prototypes, Declaring Variable Length Parameter Declarations, The inline Keyword, pointers to Functions, C's Dynamic Allocation Functions, restrict-Qualified Pointers, Problems with Pointers.

Textbook1: Chapter 6

Module-5: Structures, Unions, Enumerations, and typedef

08 Hours

Structures, Arrays of Structures, Passing Structure to Functions, Structure Pointers, Arrays and Structures within Structures, Unions, Bit-Fields, Enumerations, Using sizeof to Ensure Portability, typedef.

Textbook1: Chapter 7

PART – A

- 1. A robot needs to find how far it must travel between two points on a 2D plane. Develop a C program to calculate the straight-line distance between the given coordinates.
- 2. Develop a C program that takes a student's marks as input and displays their grade based on the following criteria: 90 and above: Grade A

75 to 89: Grade B

60 to 74: Grade C

50 to 59: Grade D

Below 50: Grade F

Choose a suitable control structure to implement this logic efficiently.

- 3. Develop a C program that takes a unique identification input like PAN_Number, AADHAR_Number, APAAR_Id, Driving License, Passport and checks it against a set of stored KYC records. Based on the input, display whether the individual is verified or not. Use an appropriate control structure to handle multiple possible ID matches. Assume all Unique identification are of integer type.
- 4. A robot needs to find how far it must travel between two points on a 2D plane. Develop a C program to calculate the straight-line distance between the given coordinates.
- 5. Develop a C program that takes a student's marks as input and displays their grade based on the following criteria: 90 and above: Grade A

75 to 89: Grade B

60 to 74: Grade C

50 to 59: Grade D

Below 50: Grade F

Choose a suitable control structure to implement this logic efficiently.

- 6. Develop a C program that takes a unique identification input like PAN_Number, AADHAR_Number, APAAR_Id, Driving License, Passport and checks it against a set of stored KYC records. Based on the input, display whether the individual is verified or not. Use an appropriate control structure to handle multiple possible ID matches. Assume all Unique identification are of integer type.
- 7. A math app needs to determine the type of roots for a quadratic equation based on user input.

Develop a C program to calculate and display the roots based on the given coefficients.

- 8. A sensor in a robotic arm needs to calculate the angle of rotation in real-time, but the hardware doesn't support built-in trigonometric functions. Develop a C program to approximate the value of sin(x) using a series expansion method for improved performance.
- 9. Write a C program that accepts a course description string and a keyword from the user. Search whether the keyword exists within the course description using appropriate string functions. If found, display: "Keyword '<keyword>' found in the course description." Otherwise, display: "Keyword '<keyword>' not found in the course description."
- 10. Develop a C program that takes marks for three subjects as input. Use a function to check if the student has passed (minimum 40 marks in each subject). Display the average and whether the student passed or failed.
- 11. In an ATM system, two account balances need to be swapped temporarily for validation. Develop a C program that accepts two balances and uses a function with pointers to swap them. Display the balances before and after swapping.

PART - B

- 1. A college library has a digital bookshelf system where each book is assigned a unique Book ID. The bookshelf is organized in ascending order of Book IDs. Develop a C Program to quickly find whether a book with a specific Book ID is available in the shelf.
- 2. A sports teacher has recorded the scores of students in a 100-meter race. To prepare the result sheet, the teacher wants the scores arranged in **descending order** (from highest to lowest). Write a C program to sort the scores.
- 3. A small warehouse tracks how many units of different products are shipped from multiple branches. Another dataset shows how much revenue each product generates per unit. Combine these datasets to calculate the total revenue generated by each branch.
- 4. A basic mobile contact manager stores first and last names separately. For displaying full names in the contact list, you need to join them manually. Additionally, the system must check the length of each full name to ensure it fits the screen. Perform these operations without using built-in string functions.
- 5. A currency exchange booth allows users to convert between two currencies. Before confirming the exchange, the system simulates a swap of the values to preview the result without actually changing the original data. In other cases, it updates the actual values. Demonstrate both behaviours. (Call by Value and Call by reference).

A local library needs to store and display details of its books, including title, author, and year of publication. Design a structure that can hold these details and display a list of all books entered.

Suggested Learning Resources: (Textbook/Reference Book):

I. Textbooks:

- 1. Schildt, Herbert. "C the complete reference." (2021), 4th Edition
- 2. E Balgurusamy, Programming in ANSI C, 9th Edition, McGraw Hill

II. Reference books:

- 1. Brian W. Kernighan and Dennis M. Ritchie, The 'C' Programming Language, Prentice Hall of India
- 2. Reema Thareja, Programming in C, 2nd Edition, Oxford University Press, 2015
- 3. E. Balagurusamy, Programming in ANSI C, 8th Edition, McGraw-Hill Education

III. Web links and Video Lectures (e-Resources):

- 1. elearning.vtu.ac.in/econtent/courses/video/BS/15PCD23.html
- 2. Introduction to Programming in C [https://onlinecourses.nptel.ac.in/noc23_cs02/preview]
- 3. C for Everyone: Programming Fundamentals [https://www.coursera.org/learn/c-for-everyone]
- 4. Computer Programming Virtual Lab [https://cse02-iiith.vlabs.ac.in/exp/pointers/]
- 5. C Programming: The ultimate way to learn the fundamentals of the C language [https://www.pdfdrive.com/c-programming-the-ultimate-way-to-learn-the-fundamentals-of-the-c-language-e187584209.html]
- 6. C Programming: The Complete Reference [https://viden.io/knowledge/programming-in-c-language/attachment/28313/c-the-complete-reference-herbert-schildt-4th-edition-pdf/preview]
- 7. https://infyspringboard.onwingspan.com/web/en/app/toc/lex_auth_013843237039 37433634517 shared/overview

Teaching-Learning Process (Innovative Delivery Methods):

The following are sample strategies that educators may adopt to enhance the effectiveness of the teaching- learning process and facilitate the achievement of course outcomes.

- 1. Flipped Classroom
- 2. Interactive Coding Platforms

Assessment Structure:

Component	Type of assessment	Max. Marks	Tota l	Reduce d Marks	Total	Min. Marks required for eligibility	Total Mark s
CIE –	AAT	10	10	5	25	10	50
Theory	Test 1	40	120	20	23	10	50

	EE	10	0	50 50		20 35	50
	Record & Performance	5	5	5			
CIE – Lab	Lab Test1 (10) Lab Test2 (10)	20	20	20	25	10	
	Test 3	40					
	Test 2	40					

Self-Learning Activity -1: (Marks- 10): Think Pair & Implement

INSTRUCTIONS (Conducted for 10M and reduced to 5M)

Think-pair & Implement is a collaborative learning strategy where students work together to analyse and implement the application in a given stipulated time(The problem to be implemented should be chosen from the co-courses such as Physics or Electrical Engineering, etc.,). These activities enhance the learning ability, problem solving skills, programming skills, presentation skills and documentation of report.

- 1. A group of 2 students are given to develop an application by the respective faculty. Students as a team of 2 are made to implement the application with suitable outputs.
- 2. Students shall present their code. Marks will be awarded based on their understanding of concepts and code.
- 3. A report of maximum 5 pages be submitted by each group comprising front page, Description (Abstract), Design (Flowchart/Sequence Diagram) and Outcome of the application (Result and Conclusion).
- 4. Submission of the code through Github

Course Title: Eleme	Semester	I	
and Bio	mimetics		
Course Code	25BT1PSEBB	CIE Marks	50
Teaching Hours/Week (L:T:P: S)	3:0:2:0	SEE Marks	100
Total Hours of Pedagogy	40	Total Marks	100
Credits	4	Exam Hours	3
Examination type (SEE)			

Course Outcomes (Course Skill Set)

After completing the course, the students will be able to

CO1: Understand the fundamental concepts of biotechnology.

CO2: Demonstrate a foundational understanding of core biotechnological techniques (PO1)

CO3: Apply interdisciplinary thinking to address challenges in engineering sectors using biotechnology and biomimetics (PO1, PO5, PO6)

CO5: Conduct experiments on biotechnological techniques, biomimicry and interpret the data (PO2, PO4, PO9, PO10).

Module-1: Basics of Biology

09 Hours

Structure and functions of prokaryotic and eukaryotic cells. Central dogma of Biology (DNA to RNA to Protein), Biomolecules of life - Carbohydrates (examples of Mono, Di, Polysaccharides), Proteins (examples of enzymes, structural proteins, transport proteins, regulatory proteins, and hormones), Structure and types of DNA

& RNA, vitamins and enzymes.

Module-2: Overview of Biotechnology

07 Hours

History, scope, and branches/types of biotechnology such as medical biotechnology (red) - focusing on healthcare; agricultural biotechnology (green): improving crops; basics of industrial biotechnology, basic concepts of environmental biotechnology, yellow biotechnology (food production):probiotics and basics of bioinformatics

Module-3: Biotechnology Processes & Sustainability

06 Hours

Bioprocess stages: Bio Ethanol production from Agri-waste, Biosafety levels, containment, cGMP/GLP and IPR issues). Circular bioeconomy and biotechnology's role in UN SDGs, Ethical, legal, and social issues in biotechnology, GI tags, specific case studies related to Basmati or Turmeric.

Module-4: AI in Biological Research

10 Hours

Role of AI in genomics. Role of AI in drug development, AI-assisted target design, AI in medical imaging and disease diagnosis, AI-driven personalized medicine and predictive healthcare, Role of AI in agriculture and crop improvement, Role of AI in fermentation industry and bioprocess optimization, Role of AI in Protein and enzyme

engineering, Role of AI in biosensors and diagnostics.

Module-5: Bioinspired Engineering and applications

08 Hours

Basics, history, and scope of biomimetic, Levels and approaches of biomimetic Bioinspired materials: nacre, bone, spider silk, cuticle-based composites, Self-cleaning surfaces and living materials. Bioinspired mechanisms: hygromorphic actuators, fish/bird locomotion, termite mound passive cooling, Seashell-based, spider web-inspired, and insect eye-inspired innovations, mosquito proboscis inspired needles, drug delivery inspired by biology, Bioinspired energy and solar systems

Suggested Learning Resources: (Textbook/Reference Book):

I. Textbooks:

- 1. P. K. Gupta, Elements of Biotechnology, Rastogi Publications, 468, 2010
- Vogel, Steven. Cats' Paws and Catapults: Mechanical Worlds of Nature and People.
 W. W. Norton & Company, 2000

II. Reference books:

- 1. Singh B.D., Biotechnology: Expanding Horizons, Kalyani Publishers, 768 pages, 2019
- 2. Barnum, Susan R., Biotechnology: An Introduction, Cengage Learning, 432 pages, 2021
- 3. Bar-Cohen, Yoseph, Biomimetics: Nature-Based Innovation, CRC Press, 788 pages, 2012
- 4. Mukherjee, A.K., and Ghosh, S.K., Biomimicry: Nature Inspired Solutions, Narosa Publishing House, 260 pages, 2018
- 5. Vincent, Julian F.V., Structural Biomaterials, Princeton University Press, 252 pages, 2012
- 6. Herren, Ray V., Introduction to Biotechnology, Cengage Learning, 672 pages, 2018
- 7. Nath, Bhaskar, Advances in Biotechnology, Atlantic Publishers, 300 pages, 2020

III. Web links and Video Lectures (e-Resources):

- 1. Bioengineering: An Interface with Biology and Medicine, https://onlinecourses.nptel.ac.in/noc21 bt05/preview?utm source=chatgpt.com.
- 2. Introduction to Biomimicry (Multi-Disciplinary), https://onlinecourses.nptel.ac.in/noc22_ge24/preview?utm_source=chatgpt.com.
- 3. Industrial Biotechnology, https://onlinecourses.nptel.ac.in/noc20 bt21/preview?utm source=chatgpt.com
- 4. Fundamentals of Bioprocess Engineering, https://onlinecourses.nptel.ac.in/noc25 bt84/preview?utm source=chatgpt.com.
- 5. Medical Biomaterials, https://onlinecourses.nptel.ac.in/noc20 bt12/preview?utm source=chatgpt.com.

List of Lab activities:

I. COVENTIONAL EXPERIMENTS

- 1. Preparation of standard buffers
- 2. Estimation of carbohydrates and protein with error analysis Microbial techniques
- 3. Sterilization of glassware using dry and wet heat Microscopy & Staining
- 4. Onion root tip stages of mitosis & mitotic index
- 5. Observation of prokaryotic and eukaryotic cells (Preparation of permanent slides
- 6. Observation of natural microstructures (leaf, insect wing, feather) under microscope.

II. OPEN ENDED EXPERIMENTS

Open-ended experiments are a type of laboratory activity where the outcome is not predetermined, and students are given the freedom to explore, design, and conduct the experiment based on the problem statements as per the concepts defined by the course coordinator. It encourages creativity, critical thinking, and inquiry-based learning.

Concept: Antimicrobial activity: Antimicrobial Sensitivity Testing using Plant Extracts or Antibiotics

Teaching-Learning Process (Innovative Delivery Methods):

The following are sample strategies that educators may adopt to enhance the effectiveness of the teaching-learning process and facilitate the achievement of course outcomes.

The following are sample strategies that educators may adopt to enhance the effectiveness of the teaching-learning process and facilitate the achievement of course outcomes.

- 1. Flipped class
- 2. Chalk and talk
- 3. NPTEL and other videos for theory topics
- 4. Partial Delivery of course by Industry expert/industrial visits
- 5.ICT-Enabled Teaching.
- 6. Activity based learning.
- 7. Keep fundamentals as the core teaching content.
- 8. Present recent trends as short "industry snapshot" segments at the end of each module (e.g., 15–20 minutes), not as examinable depth topics.
- 9.Use case studies, videos, or demonstrations for the advanced concepts so students see applications without getting bogged down in mechanisms. Example Lotus leaf effect → self-cleaning surfaces, Shark skin → drag reduction in swimsuits.
- 10. Make the trends part of assessments via assignments, mini-seminars, or group presentations, so the main lecture hours focus on the basics.

Flipped Classroom: Students watch short video lectures before class; class time used for discussion/problem-solving.

Assessment Structure:

The assessment in each course is divided equally between Continuous Internal Evaluation (CIE) and the Semester End Examination (SEE), with each carrying 50% weightage.

- To qualify and become eligible to appear for SEE, in the CIE, a student must score at least 40% of 50 marks, i.e., 20 marks.
- To pass the SEE, a student must score at least 35% of 50 marks, i.e., 18 marks.

The student's performance in a course shall be judged individually and together based on the results of CIE and SEE. The lab component will be included in CIE for 25 marks (Open ended and continuous evaluation). Both PART-A and PART-B are considered for CIE and SEE

Continuous Comprehensive Assessments (CCA):

Continuous Internal Evaluation (CIE): includes mid-term tests, weekly/fortnightly class tests, homework assignments, problem solving, group discussions, quiz, seminar, miniproject and other Alternate Assessment Tools (AAT) prescribed by the faculty handling a course prior to beginning of the classes.

It is recommended to include a maximum of two learning activities aimed at enhancing the holistic development of students. These activities should align with course objectives and promote higher-order thinking and application-based learning.

Learning Activity - 1: Case Study / Practical Assignment (Marks – 25)

INSTRUCTIONS:

- I. Course instructor will refer to relevant textbooks, NPTEL resources, or recent research articles to derive the questions for problem-solving and application.
- II. Course instructor must identify problems or activities from these areas:
 - 1. Biotechnology Fundamentals (DNA/RNA structure, biomolecules, cell ultrastructure)
 - 2. Biotechnological Techniques (PCR, gel electrophoresis, blotting, gene transfer methods)
 - 3. Applications (insulin production, stress-resistant plants, bioremediation, gene therapy)
 - 4. Biomimetics Basics (natural materials, bioinspired designs)
 - 5. Applications of Biomimetics (civil engineering, medical devices, robotics, energy systems)
- III. Course instructor will assign THREE tasks from the above areas to the students for:
 - 1. Background study of the concept
 - 2. Experimental design or application design

- 3. Data collection/analysis or feasibility study
- Students must demonstrate the solutions, experimental results, or design IV. prototypes to the course instructor and submit the record containing:
 - 1. Introduction & objectives
 - Methodology / approach used
 Observations & results

 - 4. Analysis & discussion
 - 5. Conclusion & future scope

Course instructor must evaluate the student performance as per the rubrics provided for Learning Activity-1.

Rubrics for Learning Activity-1 (Case Study / Practical Assignment on

Biotechnology & Biomimetics

Component &	Outstanding (5)	Exceeds	Meets	Needs	Unsatisfa
CO–PO		Expectations	Expectatio	Improvement	ctory (1)
Mapping		(4)	ns (3)	(2)	
Clarity &	Concepts are	Concepts	Concepts	Concepts are	Concepts
Accuracy of	explained with	are clear	are	vague and	are
Concept	complete accuracy,	and mostly	somewhat	missing	unclear,
Explanation	well-structured, and	accurate;	clear but	important	incomple
[CO1] [PO9]	free of ambiguity;	minor	lack	details; high	te, or
	strong linkage to	ambiguity	precision;	ambiguity.	irrelevan
	syllabus topics.	present.	moderate		t to the
			ambiguity.		activity.
Appropriate	Demonstrates precise	Correctly	Uses	Limited	No
Use of	and context-	uses	terminolog	understandin	evidence
Scientific	appropriate use of	terminolog	y with	g of	of correct
Terminology	biotechnology/biomi	y with	partial	terminology;	terminol
and	me tics terminology;	minor	understan	approach is	ogy
Experimental/D	experimental/design	gaps;	ding or	unclear or	usage or
e sign	approach is	approach is	inconsiste nt	weak.	relevant
Approach[CO2,	innovative and well-	clear but	accuracy;		approac
CO4] [PO1,	structured.	not highly	approach		h.
PO3]		innovative.	is basic.		
Data	Provides accurate	Provides	Provides	Provides	Results/
Collection,	results/data with	correct	correct	partially	data are
Analysis &	detailed analysis for	results/data	results/da ta	correct data;	incorrect
Interpretation	multiple cases;	with	with	minimal	or
	comparisons	analysis for	limited	analysis,	missing;
	highlight strengths	multiple	analysis;	weak or	no
	and weaknesses	cases,	compariso	incomplete	meaning
	clearly.	though	ns are	comparisons.	ful
		slightly	shallow.		analysis.
		less			

		detailed.			
Creativity & Problem-Solving in Application [CO3, CO4] [PO3, PO11]	Demonstrates outstanding creativity and innovation in applying biotech/biomimetics concepts to solve real- world problems.	Shows creativity and some innovation; solutions are practical and relevant.	Shows moderate creativity; solutions are functional but not innovative.	Minimal creativity; solutions are repetitive or unimaginative.	No creativit y or problemsolving evident in the work.
Documentation & Reflection [CO1, CO4] [PO8, PO9, PO11]	Documentation is complete, well-organized, and includes deep reflection on improvements, challenges, and learning outcomes.	Documenta tion is complete with some reflection on refinement and learning.	Document ation is present but lacks detail or depth in reflection.	Incomplete documentation; minimal reflection.	No documen tation or reflection provided as per schedule.

Suggested Learning Activities may include (but are not limited to):

- 1. Course Project
- Case Study Presentation
 Tool/Software Exploration
- 4. Any other relevant and innovative academic activity
- 5. Use of MOOCs and Online Platforms

Suggested Innovative Delivery Methods may include (but are not limited to):

- 1. Flipped Classroom
- 2. Problem-Based Learning (PBL)
- 3. Case-Based Teaching
- 4. Simulation and Virtual Labs
- 5. Partial Delivery of course by Industry expert/ industrial visits
- 6. ICT-Enabled Teaching
- 7. Role Play

Course Titl	Semester	I/II	
Course Code	25MA1HSSSK / 25MA2HSSSK	CIE Marks	50
Teaching Hours/Week (L:T:P: S)	1-0-0	SEE Marks	50
Total Hours of Pedagogy	01	Total Marks	100
Credits		Exam Hours	3
Examination type (SEE)			

Course Outcomes (Course Skill Set)

- **CO 1:** Apply social skills for clear communication, persuasion, self-awareness, and active listening
- **CO 2:** Use emotional skills to build confidence, manage stress, and adapt to change
- **CO 3:** Set ambitious goals, practice empathy, and apply creativity for problem-solving
- **CO 4:** Demonstrate discipline, time management, and structured problem-solving
- **CO 5:** Work in teams, negotiate, resolve conflicts, and think critically

Module-1: 03 Hours

- **Communication:** Principles of clear and effective exchange of ideas in professional and social contexts.
- **Persuasion:** Techniques to influence and convince through logical, emotional, and ethical appeals.
- **Self-Awareness:** Identifying personal strengths, weaknesses, opportunities, and challenges (SWOC analysis).

Active Listening: Paraphrasing, questioning techniques, and demonstrating attentiveness

Instructional Design	Each competency is taught and assessed through guided visualisations,					
	reflections, explainers and hands on activities conducted during sessions					
	build both conceptual understanding and real- world application.					
Teaching	TBTL (Task-Based Teaching Learning) – interactive workshops, simulations,					
Methodology	activities, peer feedback. Eclectic Approach					
Language Lab	Quicklrn.com					
Experiential	To embed skills, participants get hands-on through:					
Learning Methods	Guided reflections and explainers to connect concepts with relatable real-life situations					
	Guided visualization to prompt reflection and self-discovery					
	Role-plays and activities to practice behaviours in context					
	Peer discussions to gain diverse perspectives.					
Assessment Methods	Formative: Role-plays, activities, group discussions, peer feedback. Summative: Presentations, written reflections, problem-solving exercises.					

Module-2: 03 Hours

Emotional Skills I:

- Emotional Intelligence (EI): Recognizing and managing emotions, empathy, relationship management, and conflict resolution.
- Stress Management: Identifying stress triggers, relaxation techniques, work-life balance strategies, and mindfulness practices.
- Time Management: Prioritization (Eisenhower Matrix), setting SMART goals, avoiding procrastination, and effective scheduling.
- Adaptability & Resilience: Handling change, bouncing back from setbacks, and developing a growth mindset.

Instructional Design	Each competency is taught and assessed through guided visualisations, reflections, explainers and hands on activities				
	conducted during lab sessions those build both conceptual				
	understanding and real-world application.				
Teaching	TBTL (Task-Based Teaching Learning) - interactive				
Methodology	workshops, simulations, activities, peer feedback. Eclectic Approach				
Language Lab	Quicklrn.com				
Experiential	 To embed skills, participants get hands-on through: 				
Learning Methods	Guided reflections and explainers to connect concepts with				
	relatable real-life situations				
	Guided visualization to prompt reflection and self- discovery				
	Role-plays and activities to practice behaviours in context				
	Peer discussions to gain diverse perspectives.				
Assessment Methods	Formative: Role-plays, activities, group discussions, peer feedback.				
	Summative: Presentations, written reflections, problem- solving				
	exercises.				

Module-3: 03 Hours

Emotional Skills II:

- Ambition & Goal Setting: Defining personal and professional aspirations, creating SMART goals, and aligning actions with long-term vision.
- Sympathy & Empathy: Understanding emotional perspectives, differentiating between the two, and applying them in workplace and social interactions.
- Creativity & Innovation: Generating original ideas, problem-solving, and applying creative thinking techniques (mind-mapping, SCAMPER).

Instructional Design	Each competency is taught and assessed through guided visualisations, reflections, explainers and hands on activities conducted during lab sessions those build both conceptual understanding and real-world application.					
Teaching Methodology	TBTL (Task-Based Teaching Learning) – interactive workshops, simulations, activities, peer feedback. Eclectic Approach					
Language Lab	Quicklrn.com					
Experiential Learning Methods	 To embed skills, participants get hands-on through: Guided reflections and explainers to connect 					

	 concepts with relatable real-life situations Guided visualization to prompt reflection and self-discovery Role-plays and activities to practice behaviours in context Peer discussions to gain diverse perspectives. 	
Assessment Methods	Formative: Role-plays, activities, group discussions, peer feedback. Summative: Presentations, written reflections, problem-solving exercises.	

Module-4: 03 Hours

Professional Skills I:

- **Problem Solving:** Identifying root causes, analysing options, and implementing solutions using methods like 5 Whys and Fishbone Diagram.
- **Discipline:** Building consistency, accountability, and professional habits.
- **Time Management:** Prioritizing tasks (Eisenhower Matrix), scheduling, avoiding procrastination

Instructional Design	Each competency is taught and assessed through guided visualisations, reflections, explainers and hands on activities conducted during lab sessions those build both conceptual understanding and real-world application.					
Teaching	TBTL (Task-Based Teaching Learning) – interactive workshops,					
Methodology	simulations, activities, peer feedback. Eclectic Approach.					
Language Lab	Quicklrn.com					
Experiential Learning Methods	To embed skills, participants get hands-on through: Guided reflections and explainers to connect concepts with relatable real-life situations Guided visualization to prompt reflection and self-discovery Role-plays and activities to practice behaviours in context Peer discussions to gain diverse perspectives.					
Assessment Methods	Formative: Role-plays, activities, group discussions, peer feedback. Summative: Presentations, written reflections, problem-solving exercises.					

Module-5: 03 Hours

Professional Skills II:

- Collaboration & Teamwork: Working effectively in diverse teams, fostering trust, and achieving shared goals.
- Negotiation & Conflict Resolution: Strategies to resolve differences and reach win- win outcomes.
- Critical Thinking: The ability to analyze, evaluate, and synthesize information to make well-reasoned decisions.

Instructional	Each competency is taught and assessed through guided visualisations,
Design	reflections, explainers and hands on activities conducted during lab
	sessions those build both conceptual understanding and real-world application.
Teaching	TBTL (Task-Based Teaching Learning) – interactive workshops,
Methodology	simulations, peer feedback. Eclectic Approach
Language Lab	Quicklrn.com
	To embed skills, participants get hands-on through:
Experiential Learning Methods	Guided reflections and explainers to connect concepts with relatable real- life situations Guided visualization to prompt reflection and self-discovery Role-plays and activities to practice behaviours in context Peer discussions to gain diverse perspectives.
	Formative: Role-plays, group discussions, peer feedback.
Assessment	Summative: Presentations, written reflections, problem-solving
Methods	exercises.

Suggested Learning Resources: (Textbook/Reference Book):

I. Textbooks:

- 1. Principles of Scientific and Technical Writing, 1e, By Pratap K. J. Mohapatra, Sanjib Moulick, © 2025 | Published: December 23, 2024
- 2. Soft Skills, 1e, By Soma Mahesh Kumar © 2024 | Published: June 8, 2023
- 3. Effective Technical Communication, 3e, By Ashraf M. Rizvi, Priyadarshi Patnaik, © 2024 | Published: September 12, 2024
- 4. Yadav, D. P. (2022). A course in English pronunciation. Notion Publications

II. Reference books:

- 1. Oxford Advance Learners Dictionary
- 2. Cambridge English Skills Real Listening and Speaking by Miles Craven
- 3. Communicative English for Professionals by Nitin Bhatnagar and Mamta Bhatnagar

III. Web links and Video Lectures (e-Resources):

- 1. Google Docs + Voice Typing https://docs.google.com
- 2. LearnEnglish https://learnenglish.britishcouncil.org/
- 3. TakeIELTS https://www.britishcouncil.in/exam/ielts
- 4. British Council Apps bbcLearnEnglishonline Grammar

LearnEnglish Podcasts IELTS Word Power

Bbclearningenglishgrammer online Sounds Right (Phonemic Chart)

Assessment Structure:

Component	Type of assessment	Max. Marks	Total
CIE Theory	CIE 1	25	
CIE – Theory	CIE 2	25	100
SEE	End Exam	50	

Two CIEs will be conducted for 25 Marks each. SEE paper shall be set for 50 Questions, each of the 01 marks. The pattern of the Question paper is MCQ (Multiple Choice Questions). The time allotted 01 hour.

Course Title: Innovation	on And Design Thinking	Semester	I/II	
Course Code	25ME1AEIDT/25ME2AEIDT	CIE Marks	50	
Teaching Hours/Week (L:T:P: S)	1-0-0	SEE Marks	100	
Total Hours of Pedagogy		Total Marks	100	
Credits	01	Exam Hours	3	
Examination type (SEE)		<u>. </u>		

Course Outcomes (Course Skill Set)

CO1: Identify the situations, which need application of concepts of design thinking.

CO2: Develop ideas to solve the identified societal and industrial problems through design thinking tools.

CO3: Demonstrate the qualities pertaining to design thinking process through group activities.

Module-1: 03 Hours

Introduction: Scope and importance, steps in design thinking- Empathize, Define, Ideate,

Prototype and Test with examples

Module-2: 03 Hours

Empathy: Introduction, its role in creation of a successful product/service/brand, its consideration in design of product/service, Skills needed to implement design thinking

Module-3: 02 Hours

Tools for Design Thinking: Creativity and innovation-scope and importance, defining the problem, ideation methods- mind mapping, brainstorming, story boarding, journey mapping, root cause analysis, suggestion box, visualization etc.

Module-4: 03 Hours

Prototyping and Testing- virtual, conventional and 3D printing, simulation, look alike, functional models- clay, foam, wood etc.

Testing: destructive, non-destructive, user testing, role of social media in concept testing during early stages

Module-5: 02 Hours

Application of Design Thinking in IT: Design Thinking to Business Process modeling – Agile in Virtual collaboration environment

Suggested Learning Resources: (Textbook/Reference Book):

I. Textbooks:

- 1. Roger Martin, "The Design of Business: Why Design Thinking is the Next Competitive Advantage", Harvard Business Press, 2009
- 2. Hasso Plattner, Christoph Meinel and Larry Leifer (eds), "Design Thinking: Understand Improve– Apply", Springer, 2011
- 3. Idris Mootee, "Design Thinking for Strategic Innovation: What They Can't Teach You at Business or Design School", John Wiley & Sons 2013

II. Reference books:

- 1. Yousef Haik and Tamer M. Shahin, "Engineering Design Process", Cengage Learning, Second Edition, 2011.
- 2. Book Solving Problems with Design Thinking Ten Stories of What Works (Columbia Business School Publishing) Hardcover 20 Sep 2013 by Jeanne Liedtka (Author), Andrew King (Author), Kevin Bennett (Author).

III. Web links and Video Lectures (e-Resources):

- 1. www.tutor2u.net/business/presentations/
- 2. https://support.google.com/docs/answer/179740?hl=en
- 3. www.designthinkingformobility.org

Teaching-Learning Process (Innovative Delivery Methods):

These are sample Strategies; which teachers can use to accelerate the attainment of the various course outcomes.

- 1. Lecturer method (L) does not mean only the traditional lecture method, but a different type of teaching method may be adopted to develop the outcomes.
- 2. Show Video films to explain concepts
- 3. Encourage collaborative (Group Learning) Learning in the class
- 4. Ask at least three HOTS (Higher-order Thinking) questions in the class, which promotes critical thinking
- 5. Adopt Problem Based Learning (PBL), which fosters students' Analytical skills, develops thinking skills such as the ability to evaluate, generalize, and analyze information rather than simply recall it.
- 6. Topics will be introduced in multiple representations.
- 7. Show the different ways to solve the same problem and encourage the students to come up with their own creative ways to solve them.
- 8. Discuss how every concept can be applied to the real world and when that's possible, it helps improve the students' understanding.

Assessment Structure:

Component	Type of assessment	Max. Marks	Total	Reduced Marks	Total	Min. Marks required for eligibility	Total Marks
CIE	Quiz	20	50			20	50
CIE	AAT	30	50			20	50
SEE	Poster	50				20	50
222	presentation	•					
	Gra			100			

Semester End Examination: (QP PATTERN)

The SEE shall include Viva-voce group wise through Poster Presentation/Concept Video/power point presentation.

COs and POs Mapping

COs		POs										
COS	1	2	3	4	5	6	7	8	9	10	11	12
CO1	3											
CO2		3										
CO3									3	3		3

Course Title:	ಬಳಕೆ ಕನ್ನಡ	Semester	I/II
Course Code	25MA1HSBAK / 25MA2HSBAK	CIE Marks	50
Teaching Hours/Week (L:T:P: S)	1-0-0	SEE Marks	50
Total Hours of Pedagogy	15 ಗಂಟೆಗಳು	Total Marks	100
Credits	01	Exam Hours	3
Examination type (SEE)			

Course Outcomes (Course Skill Set)

After successfully completing the course, the student will be able to understand the topics:

CO1: To create an awareness regarding the necessity of learning local language for a comfortable living and to know more about Kannada culture and literature

CO2: To develop proper speaking, reading and writing skills in Kannada

CO3: To engage as a member of a team and enhance the skill in group communication and presentation

Module-1: 03 Hours

- 1. Introduction, Necessity of learning a local language. Methods to learn the Kannada language.
- 2. Easy learning of a Kannada Language: A few tips. Hints for correct and polite conservation, Listening and Speaking Activities.
- 3. Key to Transcription. Kannada Language Script.
- 4. ವ್ಯಯಕ್ತಿಕ, ಸ್ವಾಮ್ಯ ಸೂಚಕ / ಸಂಬಂಧಿತ ಸಾರ್ವನಾಮಗಳು ಮತ್ತು ಪ್ರಶ್ನಾರ್ಥಕ ಪದಗಳು -Personal Pronouns, Possessive Forms, Interrogative words

Module-2: 03 Hours

- 1. ನಾಮಪದಗಳ ಸಂಬಂಧಾರ್ಥಕ ರೂಪಗಳು, ಸಂದೇಹಾಸ್ಪದ ಪ್ರಶ್ನೆಗಳು ಮತ್ತುಸಂಬಂಧವಾಚಕ ನಾಮಪದಗಳು Possesive forms of nouns, dubitive question and Relative nouns.
- 2. ಗುಣ ಪರಿಮಾಣ ಮತ್ತು ವರ್ಣ ಬಣ್ಣ ವಿಶೇಷಣಗಳು, ಸಂಖ್ಯಾವಾಚಕಗಳು Qualitative, Quantitative and colour Adjectives, Numerals.
- 3. ಕಾರಕ ರೂಪಗಳು ಮತ್ತು ವಿಭಕ್ತಿ ಪ್ರತ್ಯಯಗಳು –ಸಪ್ತಮಿ ವಿಭಕ್ತಿ ಪ್ರತ್ಯಯ (ಆ, ಅದು, ಅವು, ಅಲ್ಲಿ) -Predictive Forms, Locative Case.

Module-3: 03 Hours

- 1. ಚತುರ್ಥಿ ವಿಭಕ್ತಿ ಪ್ರತ್ಯಯದ ಬಳಕೆ ಮತ್ತು ಸಂಖ್ಯಾವಾಚಕಗಳು Dative cases, and numerals.
- 2. ಸಂಖ್ಯಾವಾಚಕಗಳು ಮತ್ತು ಬಹುವಚನ ನಾಮರೂಪಗಳು Ordinal numerals and Plural markers.
- 3. ನ್ಯೂನ/ ನಿಷೇಧಾರ್ಥಕ ಕ್ರಿಯಾಪದಗಳು & ವರ್ಣ ಗುಣವಾಚಕಗಳು -Defective/Negative Verbs & Colour Adjectives.

Module-4: 03 Hours

1. ಅಪ್ಪಣೆ / ಒಪ್ಪಿಗೆ, ನಿರ್ದೇಶನ, ಪ್ರೋತ್ಸಾಹ ಮತ್ತು ಒತ್ತಾಯ ಅರ್ಥರೂಪ ಪದಗಳು ಮತ್ತು ವಾಕ್ಯಗಳು. Permission, Commands, encouraging and Urging words (Imperative words and sentences)

- 2. ಸಾಮಾನ್ಯ ಸಂಭಾಷಣೆಗಳಲ್ಲಿ ದ್ವಿತೀಯ ವಿಭಕ್ತಿ ಪ್ರತ್ಯಯಗಳು ಮತ್ತು ಸಂಭವನೀಯ ಪ್ರಕಾರಗಳು. Accusative Cases and Potential Forms used in General Communication.
- 3. "ಇರು ಮತ್ತು ಇರಲ್ಲ" ಸಹಾಯಕ ಕ್ರಿಯಾಪದಗಳು, ಸಂಭಾವ್ಯ ಸೂಚಕ ಮತ್ತು ನಿಷೇಧಾರ್ಥಕ ಕ್ರಿಯಾ ಪದಗಳು. – Helping verbs "iru and iralla", corresponding Future and negation verbs.

Module-5: 03 Hours

- 1 ಹೋಲಿಕೆ (ತರತಮ), ಸಂಬಂಧ ಸೂಚಕ, ವಸ್ತು ಸೂಚಕ ಪ್ರತ್ಯಯಗಳು ಮತ್ತು ನಿಷೇಧಾರ್ಥಕ ಪದಗಳ ಬಳಕೆ. Comparitive, Relationship, Identification and Negation Words.
- 2 Kannada Vocabulary List: ಸಂಭಾಷಣೆಯಲ್ಲಿ ದಿನೋಪಯೋಗಿ ಕನ್ನಡ ಪದಗಳು

Suggested Learning Resources: (Textbook/Reference Book):

I. Textbooks:

1. **ಬಳಕೆ ಕನ್ನಡ:** ಡಾ. ಎಲ್. ತಿಮ್ಮೇಶ, ಪ್ರಸಾರಾಂಗ, ವಿಶ್ವೇಶ್ವರಯ್ಯ ತಾಂತ್ರಿಕ ವಿಶ್ವವಿದ್ಯಾಲಯ, ಬೆಳಗಾವಿ

Teaching-Learning Process (Innovative Delivery Methods):

1. ಪುಸ್ತಕ ಆಧಾರಿತ ಬ್ಲಾಕ್ ಬೋರ್ಡ್ ವಿಧಾನ, ಪ್ರಮುಖ ಅಂಶಗಳ ಚಾರ್ಟ್ ಗಳನ್ನು ಬಳಸುವುದು, ಪಿಪಿಟಿ ಮತ್ತು ದೃಶ್ಯ ಮಾಧ್ಯಮದ ವೀಡಿಯೋಗಳನ್ನು ಬಳಸುವುದು, ವಿದ್ಯಾರ್ಥಿಗಳೊಂದಿಗೆ ಚಟುವಟಿಕೆಗಳ ಮುಕಾಂತರ ಚರ್ಚಿಸುವುದು.

Assessment Structure:

Component	Type of assessment	Max. Marks	Total
CIE Theory	CIE 1	25	
CIE – Theory	CIE 2	25	100
SEE	End Exam	50	

Two CIEs will be conducted for 25 Marks each. SEE paper shall be set for 50 Questions, each of the 01 marks. The pattern of the Question paper is MCQ (Multiple Choice Questions). The time allotted 01 hour.

Course Title: ন	೦೦ಸ್ಕೃತಿಕ ಕನ್ನಡ	Semester	
Course Code	25MA1HSSAK / 25MA2HSSAK	CIE Marks	50
Teaching Hours/Week (L:T:P: S)	1-0-0	SEE Marks	
Total Hours of Pedagogy	15 ಗಂಟೆಗಳು	Total Marks	100
Credits	01	Exam Hours	3
Examination type (SEE)			

Course Outcomes (Course Skill Set)

ಸಾಂಸ್ಕೃತಿಕ ಕನ್ನಡ ಕಲಿಕೆಯಿಂದ ವಿದ್ಯಾರ್ಥಿಗಳಿಗೆ ಆಗುವ ಪರಿಣಾಮಗಳು:

CO 1: ಕನ್ನಡ ಭಾಷೆ, ಸಾಹಿತ್ಯ ಮತ್ತು ಕನ್ನಡ ಸಂಸ್ಕೃತಿಯ ಪರಿಚಯವಾಗುತ್ತದೆ.

CO 2: ಕನ್ನಡ ಸಾಹಿತ್ಯದ ಆಧುನಿಕ ಪೂರ್ವ ಮತ್ತು ಆಧುನಿಕ ಕಾವ್ಯಗಳ ಹಾಗೂ ಕನ್ನಡ ಸಂಸ್ಕೃತಿಯ ಬಗ್ಗೆ ಆಸಕ್ತಿ ಮೂಡುತ್ತದೆ

CO 3: ತಾಂತ್ರಿಕ ವ್ಯಕ್ತಿಗಳ ಪರಿಚಯ, ಕನ್ನಡ ಭಾಷಾಭ್ಯಾಸ ಹಾಗೂ ಪ್ರವಾಸ ಕಥನಗಳ ಪರಿಚಯವಾಗುತ್ತದೆ.

ಲೇಖನಗಳು:

- 1. ಕರ್ನಾಟಕದ ಏಕೀಕರಣ: ಒಂದು ಅಪೂರ್ವ ಚರಿತ್ರೆ ಜಿ. ವೆಂಕಟಸುಬ್ಬಯ್ಯ.
- 2. ಆಡಳಿತ ಭಾಷೆಯಾಗಿ ಕನ್ನಡ ಡಾ. ಎಲ್. ತಿಮ್ಮೇಶ ಮತ್ತು ಪ್ರೊ. ವಿ. ಕೇಶವಮೂರ್ತಿ

<u>ಘಟಕ - 2</u> 04 Hours

ಆಧುನಿಕ ಪೂರ್ವದ ಕಾವ್ಯ ಭಾಗ:

- 1. ವಚನಗಳು: ಬಸವಣ್ಣ, ಅಕ್ಕ ಮಹಾದೇವಿ, ಅಲ್ಲಮಪ್ರಭು, ಜೇಡರದಾಸಿಮಯ್ಯ , ಆಯ್ದಕ್ಕಿ ಲಕ್ಕಮ್ಮ. ಆಯ್ದಕ್ಕಿ ಮಾರಯ್ಯ.
- 2. ಕೀರ್ತನೆಗಳು: ಅದರಿಂದೇನು ಫಲ ಇದರಿಂದೇನು ಫಲ ಪುರಂದರದಾಸರು ತಲ್ಲಣಿಸದಿರು ಕಂಡ್ಯ ತಾಳು ಮನವೇ - ಕನಕದಾಸರು
- 3. ತತ್ವಪದಗಳು: ಸಾವಿರ ಕೊಡಗಳ ಸುಟ್ಟು ಶಿಶುನಾಳ ಶರೀಫ

ಫಟಕ - 3 03 Hours

ಆಧುನಿಕ ಕಾವ್ಯ ಭಾಗ:

- 1. ಡಿ. ವಿ. ಜಿ ರವರ ಮಂಕುತಿಮ್ಮನ ಕಗ್ಗದಿಂದ ಆಯ್ದ ಕೆಲ ಭಾಗಗಳು
- 2. ಕುರುಡು ಕಾಂಚಾಣ : ದಾ. ರಾ. ಬೇಂದ್ರೆ .
- 3. ಹೊಸಬಾಳಿನ ಗೀತೆ: ಕುವೆಂಪು

ಫಟಕ - 4 03 Hours

- 1. ಡಾ. ಸರ್. ಎಂ. ವಿಶ್ಯೇಶ್ವರಯ್ಯ: ವ್ಯಕ್ತಿ ಮತ್ತು ಐತಿಹ್ಯ ಎ ಎನ್ ಮೂರ್ತಿರಾವ್
- 2. ಯುಗಾದಿ: ವಸುಧೇಂದ್ರ

ಮೆಗಾನೆ ಎಂಬ ಗಿರಿಜನ ಪರ್ವತ: ಹಿ ಚಿ ಬೋರಲಿಂಗಯ್ಯ

Suggested Learning Resources: (Textbook/Reference Book):

I. ಪಠ್ಯ ಪುಸ್ತಕ:

1. ಸಾಂಸ್ಕೃತಿಕ ಕನ್ನಡ ಡಾ. ಹಿ. ಚಿ. ಬೋರಲಿಂಗಯ್ಯ ಮತ್ತು ಡಾ. ಎಲ್. ತಿಮ್ಮೇಶ, ಪ್ರಸಾರಾಂಗ, ವಿಶ್ವೇಶ್ವರಯ್ಯ ತಾಂತ್ರಿಕ ವಿಶ್ವವಿದ್ಯಾಲಯ, ಬೆಳಗಾವಿ.

ಭೋದನೆ ಮತ್ತು ಕಲಿಕಾ ವಿಧಾನ:

1. ಪುಸ್ತಕ ಆಧಾರಿತ ಬ್ಲಾಕ್ ಬೋರ್ಡ್ ವಿಧಾನ, ಪ್ರಮುಖ ಅಂಶಗಳ ಚಾರ್ಟ್ ಗಳನ್ನು ಬಳಸುವುದು, ಪಿಪ್ಟ್ ಮತ್ತು ದೃಶ್ಯ ಮಾಧ್ಯಮದ ವೀಡಿಯೋಗಳನ್ನು ಬಳಸುವುದು, ವಿದ್ಯಾರ್ಥಿಗಳೊಂದಿಗೆ ಚಟುವಟಿಕೆಗಳ ಮುಕಾಂತರ ಚರ್ಚಿಸುವುದು

Assessment Structure:

Component	Type of assessment	Max. Marks	Total
CIE Theory	CIE 1	25	
CIE – Theory	CIE 2	25	100
SEE	End Exam	50	

Two CIEs will be conducted for 25 Marks each. SEE paper shall be set for 50 Questions, each of the 01 marks. The pattern of the Question paper is MCQ (Multiple Choice Questions). The time allotted 01 hour.

Course Title: Applied Cher	Semester	I/II		
(Computer science en				
Course Code	25CY1BSCCS/25CY2BSCCS	CIE Marks	50	
Teaching Hours/Week (L:T:P: S)	g Hours/Week (L:T:P: S) 3:0:2:2			
Total Hours of Pedagogy	40	Total Marks	100	
Credits	04	Exam Hours	03	
Examination type (SEE)	Descriptive			

Course Outcomes (Course Skill Set)

After completing the course, students will be able to:

CO1: Apply the principles of chemistry involved in corrosion, energy systems, materials and sensors for smart systems.

CO2: Analyze the engineering problems and draw meaningful inferences through concepts of chemistry.

CO3: Implement sustainable solutions through concepts of applied chemistry in the field of materials, energy and environment.

CO4: Engage in self-study and make an effective presentation on contribution of chemistry to society.

CO5: Apply the knowledge of chemistry to investigate engineering materials by analytical techniques.

Module-1: Electrochemistry of corrosion and sensors

8 Hours

Smart systems-introduction, types and importance.

Electrochemistry: Introduction, electrode potential, concentration cell, numerical problems. Reference electrodes-Calomel electrode-construction and working. Ion selective electrodes – pH electrode-construction and working.

Corrosion: Introduction, electrochemical theory of corrosion, types-differential metal and differential aeration corrosion, corrosion control by cathodic protection methods and corrosion inhibitors for computer circuit boards, corrosion penetration rate (CPR) - definition, importance and numerical.

Sensors: Introduction, terminologies - transducer, actuators and sensors, principle and applications of -conductometric sensors for the estimation of acid mixture and electrochemical gas sensors for the detection of NOx. Biosensor-principle and application for detection of glucose in biofluids.

Self learning: Galvanization and anodization.

Module-2: Sustainable energy systems

8 Hours

Batteries: Introduction and classification of batteries. Construction, working and applications of Li-ion battery.

Next generation energy systems: Introduction, construction and working of sodium ion battery and redox flow battery for EV applications. Introduction to supercapacitors, construction and working of ultra-small asymmetric supercapacitor in IoT/wearable device applications.

Clean energy: Introduction, fuel cell, difference between fuel cell and battery. Construction, working, applications and limitations of solid-oxide fuel cell (SOFCs). Production of green hydrogen by photocatalytic water splitting using TiO₂ and its advantages.

Quantum Dots: Introduction, size dependent properties - quantum confinement effect, surface-to-volume ratio & band gap. Quantum dot sensitized solar cells (QDSSCs)-construction, working and

applications.

Self learning: Synthesis and applications of Cd-Se quantum dots by wet chemical method.

Module-3: Polymers for advanced systems

8 Hours

Polymers: Introduction, terminology, molecular weight of polymers - number and weight average molecular weight of polymers, numerical. Structure-property relationship of polymers, synthesis and properties of nylon-12 and its advantages in 3D printing applications. Synthesis and properties of CPVC and PMMA for device applications.

Conducting polymers- Introduction, synthesis of polyaniline, conduction mechanism and its engineering applications.

Biomaterials: Introduction, synthesis and properties of polylactic acid (PLA) and polyethylene glycol (PEG) for touch screen applications. Properties and applications of alginate hydrogel for Brain-Computer Interfaces (BCIs).

Self-learning: Definition and significance of glass transition temperature.

Module-4: Functional materials for memory and display systems

8 Hours

Memory devices: Introduction, difference between organic and inorganic memory devices, organic semiconductors; types of organic semiconductors used in memory devices - p-type semiconductors and n-type semiconductors. Construction, working and advantages of organic semiconductor chip.

Resistive RAM (ReRAM) materials: Introduction, synthesis of nano-TiO₂ by sol-gel method, properties and applications in ReRAM.

Display systems: Introduction, liquid crystals (LCs) - classification, properties and their applications in Liquid Crystal Displays (LCDs), Jablonski diagram. Construction, working and applications of OLEDs, and Quantum Light Emitting Diodes (QLEDs).

Self learning: Active-Matrix Organic Light Emitting Diodes (AMOLEDs)

Module-5: Green materials and E-waste management

8 Hours

Green materials: 12 principles of green chemistry (numerical on atom economy), properties and applications of green solvents for server heat management. Biosynthesis and properties of glycerol trioleate ester for server and IT infrastructure applications. Green synthesis of ZnO nanoparticles for magnetic radio frequency identification (RFID) & Internet of Nano Things (IONT) system applications. **E-waste:** Introduction, sources, composition of e-waste, effects of e-waste on environment and human health. Extraction of metals from e-waste – gold by bioleaching method, copper by hydrometallurgical method. Direct recycling method of lithium-ion batteries.

Self learning: Role of artificial intelligence in e-waste management and its applications.

Suggested learning resources:

I. Textbooks:

- 1. Engineering Chemistry, Dr. S. Vairam and Dr. Suba Ramesh, 2nd Edition, 2013, Wiley.
- 2. Engineering Chemistry, Jain and Jain 2015, 17th edition, Dhanpat Rai Publishing Company.

II. Reference books:

- 1. Semiconducting Materials and Devices, Deepak Verma, 2022, Agrotech Publishing Academy, ISBN: 9789394777712
- 2. High Quality Liquid Crystal Displays and Smart Devices Ishihara, Kobayashi & Ukai (2019, IET), ISBN: 9781785619397
- 3. Conducting Polymers, Fundamentals and Applications: Including Carbon Nanotubes and Graphene: Prasanna Chandrasekhar (IIT Delhi alumnus), Springer, 2019 (2nd ed.), ISBN 13: 978 3030098858.

III. Web links and Video Lectures (e-Resources):

- 1. http://nptel.ac.in/
- 2. https://swayam.gov.in/

Teaching-Learning Process (Innovative Delivery Methods):

- 1. Flipped classroom
- 2. Project based learning
- 3. Simulation and Virtual labs
- 4. Partial delivery of course content by industry expert

Assessment Structure:

Component	Type of assessment	Max. Marks		Weightage	Total	Total Marks	
	AAT# (Alternative Assessment Tool)	20		10			
Theory	Test 1	40	Best		50	25	
·	Test 2	40 of Two		40			
	Test 3	40	tests				
Record and observation			00 +100)	10	25	25	
	CIE	50		15			
SEE	Sem End Exam	100		50		50 (SEE)	
Grand Total Marks							

***AAT** includes assignment from self-study components

*Minimum CIE marks ≥ 20 to gain eligibility to write the SEE

Continuous Comprehensive Assessments (CCA):

- 1. A team of 4–5 students to collaborate for a presentation on a specific topic or work on a project and demonstrate in the class.
- 2. A detailed project report on the chosen topic or project to be submitted by the student group.
- 3. Self learning: To encourage the students to gather information on the specified topics for advanced learning.

Course objectives:

To impart the knowledge of Chemistry involved in Electrochemical cells, Corrosion and its control; sensors; electrochemical and renewable sources of energy; polymers; functional materials in memory and display systems; green materials; e-waste management; nanomaterials and water analysis.

CO-PO mapping with strength:

COs	POs	POs									
	1	2	3	4	5	6	7	8	9	10	11
CO1	3										
CO2		2									
CO3						2					
CO4											1
CO5	2				1						

List of Lab activities:

I. Compulsory experiments:

- 1. Estimation of iron in rust sample using potentiometric sensor.
- 2. Determination of pKa of a weak acid using pH sensor.
- 3. Estimation of mixture of strong and weak acid using conductometric sensor.
- 4. Estimation of copper in e-waste by optical sensor.
- 5. Estimation of total hardness of water by EDTA method.
- 6. Determination of chemical oxygen demand (COD) of an industrial effluent sample.
- 7. Estimation of percentage of copper in brass by iodometry.
- 8. Estimation of iron in TMT bar by external indicator method.
- 9. Determination of calorific value of a solid fuel by bomb calorimeter.
- 10. Estimation of sodium in effluent by flame photometry.

II. Open-ended experiments:

- 1. Green synthesis of copper nanoparticles for conductive ink applications.
- 2. Determination of viscosity coefficient of lubricant using Ostwald's viscometer.
- 3. Determination of corrosion penetration rate (CPR) by weight-loss method.
- 4. Smartphone based colorimetric estimation of total phenolic content in beverages.
- 5. Chemical structure drawing using software: Chem Draw/ Chem Sketch.

Suggested Learning Activities:

- 1. Case Study Presentation
- 2. Tool/Software Exploration
- 3. Literature Review
- 4. Assignments
- 5. Use of MOOCs and Online Platforms

Curriculum Structure:

Course Code	Couse	Teaching and Learning Scheme					
	Title	Classroom instruction (CL) (in hours per semester)		Lab instruction (CL) (in hours per semester)	Term work (TW) and self learning (SL) (TW+SL) (in hours per semester)	Total no. of hours per semester	Total Credits (C) (Total hours/30)
		L	T	P	SL		
25CY1BSCCS/ 25CY2BSCCS	Applied Chemistry for Smart Systems	40	0	30	50	120	4

Course Title: Applied Chem	Semester	I/II					
Futuristic Devices (Electrical and electronics engineering stream)							
Course Code	25CY1BSCEE/25CY2BSCEE	CIE Marks	50				
Teaching Hours/Week	3:0:2:2	SEE Marks	50				
$(L:T:P:\overline{S})$							
Total Hours of Pedagogy	40	Total	100				
		Marks					
Credits	04	Exam	3				
		Hours					
Examination type (SEE)	Descriptive						

Course Outcomes (Course Skill Set)

After completing the course, the students will be able to

CO1: Apply the principles of chemistry involved in corrosion, energy systems, materials, quantum dots, sensors for emerging electronics and futuristic devices.

CO2: Analyze the engineering problems and draw meaningful inferences through concepts of chemistry.

CO3: Implement sustainable solutions through concepts of applied chemistry in the field of materials, energy and electronic devices.

CO4: Engage in self-study and make an effective presentation on contribution of chemistry to society.

CO5: Apply the knowledge of chemistry to investigate engineering materials by analytical techniques.

Module-1: Electrode Systems and Corrosion Science

8 Hours

Electrochemistry: Introduction, types of electrodes, concentration cell, numerical problems. Reference electrode-calomel electrode-construction, working. Ion selective electrode – pH electrode- construction, working, determination of pH using glass electrode.

Corrosion: Introduction, electrochemical theory of corrosion, types of corrosion differential metal corrosion in electronic circuits and differential aeration corrosion. Corrosion control- cathodic protection - impressed current method. Corrosion penetration rate (CPR)- definition, importance and numerical problems.

Metal Finishing: Introduction, difference between electroplating & electroless plating, electroplating of gold, electroless plating of copper on PCBs.

Self learning: Galvanization and anodization.

Module-2: Energy – Sources, Conversion and Storage

8 Hours

Chemical fuel: Calorific values, determination of calorific values by bomb calorimeter, numerical problems. Petroleum cracking- Definition with an example, Reformation of petrol-Definition with an example.

Energy Storage Devices: Introduction, classification of batteries-primary, secondary and reserve battery, characteristics (capacity, power density, energy efficiency & cycle life). Construction and working of lithium-ion battery - advantages and EV applications. Introduction to super capacitors, construction and working of ultra-small asymmetric super capacitor in IoT/wearable device applications.

Energy Conversion Devices: Introduction, construction, working, advantages and applications

of photovoltaic (PV) cell. Introduction to MEMS-based energy harvesters, working principle and applications.

Self learning: Introduction, construction and working of sodium ion battery.

Module-3: Functional Polymers in Flexible Electronics

8 Hours

Polymer: Introduction, terminology, molecular weight of polymers - number and weight average molecular weight of polymers, numerical problems. Conducting polymers: Introduction, synthesis, conduction mechanism and applications of polyaniline in electronic devices. Synthesis, properties and applications of polydimethylsiloxane (PDMS) in RFID (radio frequency identification). Synthesis, properties and applications of polyvinylidene fluoride (PVDF) in E-nose devices.

Polymeric semiconductors: Introduction, n-type and p-type polymeric semiconductor materials, organic photovoltaics - poly(3-hexylthiophene) (P3HT) as a donor and phenyl C61-butyric acid methyl ester (PCBM) as an acceptor, construction, working and applications.

Polymer Composites: Introduction, synthesis and properties of epoxy resin- Fe₃O₄ composite for sensors applications, synthesis of Kevlar Fiber Reinforced Polymer (KFRP)-properties and smart electronic devices applications.

Self learning: Difference between organic and inorganic semiconductors.

Module-4: Quantum Dot Materials for Electronics Applications

8 Hours

Nanomaterials: Introduction, size dependent properties of nanomaterials - surface area, catalytic, optical and electrical properties.

Quantum Dot Materials: Introduction, quantum confinement effect, band gap. Inorganic Quantum Dot Materials (IQDMs): Introduction, synthesis and properties of silicon based QDs by Sol-Gel method and CdSe quantum dots by hot injection method and applications in optoelectronic devices (QLED). Wet chemical synthesis, properties and applications of quantum dot-based copper conductive ink.

Quantum dot sensitized solar cells (QDSSCs)-construction, working principle and applications. Organic Quantum Dot Materials (OQDMs): Introduction, synthesis and properties of chitosancarbon quantum dots hydrogel applications in next-generation flexible and wearable electronics. Synthesis, properties and applications of graphene quantum dots in emerging electronics.

Self learning: Construction and working of OLEDs.

Module-5: Advanced Electronic Materials and E-waste Management

8 Hours

Stretchable and Wearable Microelectronics: Introduction, basic principle and working of lithography for micro-patterned copper deposition. Applications of PDMS (Polydimethylsiloxane) in e-skin (electronic skin) applications.

Sensing Methods: Introduction, principle and instrumentation of colorimetric sensors, application in the estimation of copper in PCB industry. Principle and working of potentiometric sensors- applications in the estimation of iron in steel. Conductometric sensors-application in the estimation of acid mixture in a sample.

E-waste: Introduction, need of e-waste management, sources & effects of e-waste on environment and human health, extraction of gold from e-waste from bioleaching method.

Self learning: Extraction of lithium from spent lithium-ion batteries

Suggested learning resources:

I. Textbooks:

- 1. Engineering Chemistry, Dr. S. Vairam and Dr. Suba Ramesh, 2nd Edition, 2013, Wiley.
- 2. Engineering Chemistry, Jain and Jain 2015, 17th edition, Dhanpat Rai Publishing Company.

II. Reference books:

- 1. Semiconducting Materials and Devices, Deepak Verma, 2022, Agrotech Publishing Academy, ISBN: 9789394777712
- 2. Conducting Polymers, Fundamentals and Applications: Including Carbon Nanotubes and Graphene: Prasanna Chandrasekhar (IIT Delhi alumnus), Springer, 2019 (2nd ed.), ISBN 13: 978 3030098858.
- 3. Advances in corrosion science and technology, M.G. Fontana and R.W. Staettle, Springer, 2012, ISBN: 9781461590620.

III. Web links and Video Lectures (e-Resources):

- 1. http://nptel.ac.in/
- 2. https://swayam.gov.in/

Teaching-Learning Process (Innovative Delivery Methods):

- 1. Flipped classroom
- 2. Project based learning
- 3. Simulation and Virtual labs
- 4. Partial delivery of course content by industry expert

Assessment Structure:

Component	Type of assessment	Max. Marks		Weightage	Total	Total Marks			
	AAT# (Alternative Assessment Tool)	,	20	10					
Theory	Test 1	40	Best		50	25			
Theory	Test 2	40	of Two	40		23			
	Test 3	40 tests							
Lab	Record and observation		00 +100)	10	25	25			
	CIE	4	50	15					
SEE	Sem End Exam	100		50		50 (SEE)			
	Grand Total Marks								

#AAT includes assignment from self-study components

*Minimum CIE marks \geq 20 to gain eligibility to write the SEE

Continuous Comprehensive Assessments (CCA):

- 1. A team of 4–5 students to collaborate for a presentation on a specific topic or work on a project and demonstrate in the class.
- 2. A detailed project report on the chosen topic or project to be submitted by the student group.
- 3. Self learning: To encourage the students to gather information on the specified topics for advanced learning.

Course objectives:

To impart the knowledge of Chemistry involved in electrochemical cells, Corrosion and its control; sensors; sources of energy; functional polymers; quantum dots; microelectronics; e-waste management; nanomaterials and water analysis.

CO-PO mapping with strength:

COs	POs										
	1	2	3	4	5	6	7	8	9	10	11
CO1	3										
CO2		2									
CO3						2					
CO4											1
CO5	2				1						

List of Lab activities:

I. Compulsory experiments:

- 1. Estimation of iron in rust sample using potentiometric sensor.
- 2. Determination of pKa of a weak acid using pH sensor.
- 3. Estimation of mixture of strong and weak acid using conductometric sensor.
- 4. Estimation of copper in e-waste by optical sensor.
- 5. Estimation of total hardness of water by EDTA method.
- 6. Determination of chemical oxygen demand (COD) of an industrial effluent sample.
- 7. Estimation of percentage of copper in brass by iodometry.
- 8. Estimation of iron in TMT bar by external indicator method.
- 9. Determination of calorific value of a solid fuel by bomb calorimeter.
- 10. Estimation of sodium in effluent by flame photometry.

II. Open-ended experiments:

- 1. Green synthesis of copper nanoparticles for conductive ink applications.
- 2. Determination of viscosity coefficient of lubricant using Ostwald's viscometer.
- 3. Determination of corrosion penetration rate (CPR) by weight-loss method.
- 4. Smartphone based colorimetric estimation of total phenolic content in beverages.
- 5. Chemical structure drawing using software: Chem Draw/ Chem Sketch.

Suggested Learning Activities:

- 1. Case Study Presentation
- 2. Tool/Software Exploration
- 3. Literature Review
- 4. Assignments
- 5. Use of MOOCs and Online Platforms

Curriculum Structure

Course Code	Couse Title	Teac	hing an	d Learning S	cheme		
		Clas	sroom	Lab	Term	Total no.	Total
		instr	uction	instruction	work	of hours	Credits
		(CL)) (in	(CL) (in	(TW) and	per	(C) (Total
		hour	s per	hours per	self	semester	hours/30)
		seme	ester)	semester)	learning		
					(SL)		
					(TW+SL)		
					(in hours		
					per		
					semester)		
		L	T	P	SL		
25CY1BSCEE/	Applied	40	0	30	50	120	4
25CY2BSCEE	Chemistry						
	for						
	Emerging						
	Electronics						
	and						
	Futuristic						
	Devices						

Course Title: Applied Chemistry fo and Sustainable Energy Systems stream	(Mechanical engineering	Semester	Ι
Course Code	25CY1BSCME	CIE Marks	50
Teaching Hours/Week (L:T:P: S)	3:0:2:2	SEE Marks	50
Total Hours of Pedagogy	40	Total Marks	100
Credits	04	Exam Hours	03
Examination type (SEE)	Descriptive		

Course Outcomes (Course Skill Set)

After completing the course, the students will be able to

CO1: Apply the principles of chemistry involved in corrosion, energy systems, materials and sensors for advanced metal protection and sustainable energy.

CO2: Analyze the engineering problems and draw meaningful inferences through concepts of chemistry.

CO3: Implement sustainable solutions through concepts of applied chemistry in the field of materials, energy and metal protection.

CO4: Engage in self-study and make an effective presentation on contribution of chemistry to society.

CO5: Apply the knowledge of chemistry to investigate engineering materials by analytical techniques.

Module-1: Electrochemistry of corrosion and coating technologies

8 Hours

Electrochemistry: Introduction, electrode potential, concentration cell, numerical problems. Reference electrode: Calomel electrode- construction and working. Ion selective electrode – pH electrode- construction and working.

Corrosion: Introduction, electrochemical theory of corrosion, types of corrosion-differential metal, differential aeration corrosion and stress corrosion. corrosion control: surface conversion coating and cathodic protection, sacrificial anode method, corrosion penetration rate (CPR) - Introduction and numerical problems.

Coating Technologies: Introduction, technological importance, electroplating - electroplating of chromium; hard and decorative, electroless plating - electroless plating of nickel, difference between electroplating and electroless plating.

Self learning: Galvanization and Tinning

Module-2: Conventional and sustainable fuels

8 Hours

Fuels: Introduction, calorific value, determination of calorific value using bomb calorimeter, numerical problems on GCV and NCV. Petroleum cracking- definition with an example. Octane number and cetane number. Reformation of petrol- definition with an example. Knocking in petrol engine - knocking mechanism and anti-knocking agents - methyl tertiary butyl ether (MTBE).

Green Fuels: Introduction, biodiesel - synthesis by trans-esterification method, advantages and its applications. Production of green hydrogen by photocatalytic water splitting and its advantages, hydrogen storage – physical and chemical storage methods, advantages and limitations.

Self learning: Power alcohol – properties, applications and its limitations.

Module-3: Polymers for engineering applications

8 Hours

Engineering polymers: Introduction, terminology, molecular weight of polymers - numerical problems. Glass transition temperature (Tg), factor affecting Tg and its significance, structure and property relationship of polymers. Synthesis, properties and engineering applications of chlorinated-polyvinyl chloride (C-PVC), and polycarbonates. Polymer Composites: introduction, fiber-reinforced polymers (FRPs); Kevlar – Synthesis, properties and industrial applications. Carbon-fiber - preparation from polyacrylonitrile (PAN), properties and industrial applications. Biopolymers: Introduction, synthesis, properties and applications of polylactic acid (PLA) resin in

3D printing applications.

Self learning: Synthesis, properties and applications of PMMA

Module-4: Energy systems and sensors

8 Hours

Energy Systems: Batteries - Introduction, classification of batteries, characteristics-capacity, power density, and cycle life. Construction, working and applications of Li-ion battery.

Fuel cells - Introduction, difference between fuel cell and battery, types of fuel cells, construction and working of solid oxide fuel cells (SOFCs), advantages and applications.

Photovoltaic cells (PV cells) - construction, working, advantages and limitations of quantum dot thin film solar cells.

Sensors: Introduction, potentiometric sensor - principle and its application in the estimation of iron in steel industry effluent. Conductometric sensor - principle and its application in the estimation of acids mixture. pH sensor - principle and its application in the estimation of pKa of weak acid.

Self learning: Battery characteristics: Voltage, Shelf life

Module-5: Fluid technology and nanomaterials

8 Hours

Lubricants: Introduction, classification, ideal properties and applications. Lubricant testing; Viscosity index - experimental determination of viscosity index, numericals.

Industrial Coolants: Introduction, types- water and oil-based coolants, properties and industrial applications.

Nanomaterials: Introduction, size-dependent properties of nanomaterial-surface area, catalytic, electrical and thermal conductivity. Synthesis of TiO₂ nanoparticles by sol-gel method. Carbon nanotubes (CNTs) - Synthesis by chemical vapor deposition method, properties and engineering applications, role of carbon nanotubes (CNTs) in energy devices.

Self learning: Classification of nanomaterials based on dimensions with an example

Suggested learning resources:

I. Textbooks:

- 1. Engineering Chemistry, Dr. S. Vairam and Dr. Suba Ramesh, 2nd Edition, 2013, Wiley.
- 2. Engineering Chemistry, Jain and Jain 2015, 17th edition, Dhanpat Rai Publishing Company.
- 3. Applied Chemistry for Mechanical Engineering and Allied Branches, C Manasa, Vrushabendra B, Srikantamurthy N, 2023, Astitva Prakashan.

II. Reference books:

- 1. Polymer Science, V R Gowariker, N V Viswanathan, Jayadev Sreedhar, 4th edition, 2023, Newage International Publishers.
- Conducting Polymers, Fundamentals and Applications: Including Carbon Nanotubes and Graphene: Prasanna Chandrasekhar (IIT Delhi alumnus), Springer, 2019 (2nd ed.), ISBN 13: 978-3030098858.
- 3. Advances in Corrosion Science and Technology, M.G. Fontana and R.W. Staettle, Springer, 2012, ISBN: 9781461590620

III. Web links and Video Lectures (e-Resources):

- 1. http://nptel.ac.in/
- 2. https://swayam.gov.in/

Teaching-Learning Process (Innovative Delivery Methods):

- 1. Flipped classroom
- 2. Project based learning
- 3. Simulation and Virtual labs
- 4. Partial delivery of course content by industry expert

Assessment Structure:

Component	Type of assessment	Max. Marks		Weightage	Total	Total Marks				
	AAT# (Alternative Assessment Tool)	20		10						
Theory	Test 1	40 Best			50	25				
Theory	Test 2	40	of Two	40	20	25				
	Test 3	40 tests								
Lab	Record and observation		00 +100)	10	25	25				
	CIE	4	50	15						
SEE	Sem End Exam	100		50		50 (SEE)				
	Grand Total Marks									
	Grand Total Marks 100 *AAT includes assignment from self-study components									

^{*}Minimum CIE marks ≥ 20 to gain eligibility to write the SEE

Continuous Comprehensive Assessments (CCA):

- 1. A team of 4–5 students to collaborate for a presentation on a specific topic or work on a project and demonstrate in the class.
- 2. A detailed project report on the chosen topic or project to be submitted by the student group.

3. Self learning: To encourage the students to gather information on the specified topics for advanced learning.

Course objectives:

To impart the knowledge of Chemistry involved in Electrochemical cells, Corrosion and its control; sensors; chemical fuels; energy systems; polymers; fluid technology; nanomaterials and water analysis.

CO -PO mapping with strength:

COs	POs	POs									
	1	2	3	4	5	6	7	8	9	10	11
CO1	3										
CO2		2									
CO3						2					
CO4											1
CO5	2				1						

List of Lab activities:

I. Compulsory experiments:

- 1. Estimation of iron in rust sample using potentiometric sensor.
- 2. Determination of pKa of a weak acid using pH sensor.
- 3. Estimation of mixture of strong and weak acid using conductometric sensor.
- 4. Estimation of copper in e-waste by optical sensor.
- 5. Estimation of total hardness of water by EDTA method.
- 6. Determination of chemical oxygen demand (COD) of an industrial effluent sample.
- 7. Estimation of percentage of copper in brass by iodometry.
- 8. Estimation of iron in TMT bar by external indicator method.
- 9. Determination of calorific value of a solid fuel by bomb calorimeter.
- 10. Estimation of sodium in effluent by flame photometry.

II. Open-ended experiments:

- 1. Green synthesis of copper nanoparticles for conductive ink applications.
- 2. Determination of viscosity coefficient of lubricant using Ostwald's viscometer.
- 3. Determination of corrosion penetration rate (CPR) by weight-loss method.
- 4. Smartphone based colorimetric estimation of total phenolic content in beverages.
- 5. Chemical structure drawing using software: Chem Draw/ Chem Sketch.

Suggested Learning Activities:

- 1. Case Study Presentation
- 2. Tool/Software Exploration
- 3. Literature Review
- 4. Assignments
- 5. Use of MOOCs and Online Platforms

Curriculum Structure:

Course Code	Couse Title	Teac	hing an	d Learning S	cheme		
		Clas	sroom	Lab	Term work	Total no.	Total
		instr	uction	instruction	(TW) and	of hours	Credits
		(CL)	(in	(CL) (in	self learning	per	(C) (Total
		hour	s per	hours per	(SL)	semester	hours/30)
		seme	ester)	semester)	(TW+SL)		
					(in hours		
					per		
					semester)		
		L	T	P	SL		
25CY1BSCME	Applied	40	0	30	50	120	4
	Chemistry						
	for						
	Advanced						
	Metal						
	Protection						
	and						
	Sustainable						
	Energy						
	Systems						

Course Title: Applied Chen	nistry for Sustainable Structures &	Semester	II				
Material Design (Civil Engineering stream)						
Course Code	Course Code 25CY2BSCCV						
Teaching Hours/Week	3:0:2:2	SEE Marks	50				
$(L:T:P:\overline{S})$							
Total Hours of Pedagogy	40	Total	100				
		Marks					
Credits	04	Exam	03				
		Hours					
Examination type (SEE)	Descriptive						

Course Outcomes (Course Skill Set)

After completing the course, the students will be able to

CO1: Apply the principles of chemistry involved in corrosion, energy systems, materials, sensors and water treatment for sustainable structures & material design.

CO2: Analyze the engineering problems and draw meaningful inferences through concepts of chemistry.

CO3: Implement sustainable solutions through concepts of applied chemistry in the field of materials, energy and environment.

CO4: Engage in self-study and make an effective presentation on contribution of chemistry to society.

CO5: Apply the knowledge of chemistry to investigate engineering materials by analytical techniques.

Module-1: Electrochemistry of corrosion and surface protection

8 Hours

Electrochemistry: Introduction, electrode potential, concentration cell, numerical problems. Reference electrode-Calomel electrode-construction, working. Ion selective electrode – pH electrode- construction, working.

Corrosion: Introduction, electrochemical corrosion of steel in concrete, types- differential metal corrosion and differential aeration corrosion, stress corrosion in civil structures. Factors affecting rate of corrosion (pH, temperature, nature of corrosion product, conductivity of the medium) Corrosion control by cathodic protection method. corrosion penetration rate (CPR) - definition, importance and numerical problems.

Metal Finishing: Introduction, technological importance of metal finishing, electroplating of Chromium-decorative and hard coating.

Self learning: Galvanization and anodization

Module-2: Advanced energy systems

8 Hours

Chemical fuel: Calorific values, determination of calorific values by Bomb calorimeter, numerical. Petroleum cracking- Definition with an example, Reformation of petrol- Definition with an example.

Silicon based solar cell- construction, working, advantages, applications and limitations.

Green Fuels: Introduction, green hydrogen production by photocatalytic method.

Energy systems: Introduction, classification of batteries, characteristics of battery (capacity, energy density, power density and cycle life), construction & working of Lithium-ion battery, redox flow battery and its applications, fuel cell-definition, difference between battery and fuel

cell, construction and working of solid oxide fuel cell

Self learning: Power alcohol – properties, applications and its limitations

Module-3: Conventional and sustainable structural materials

8 Hours

Polymer: Introduction, terminology, molecular weight of polymers: number average and weight average molecular weight of polymers, numerical, synthesis, properties and engineering applications of Chlorinated - PVC, butyl rubber, Kevlar fiber and epoxy resin. Polymer composites-properties and industrial applications of graphene and carbon nano-tubes as reinforced composites.

Nanomaterials: Introduction, size dependent properties viz; surface area, thermal properties, water absorption, permeability, and antimicrobial activity, composition of nano-concrete, synthesis of TiO₂ nanoparticles by sol-gel method and its applications in construction technology.

Self learning: biopolymer (polylactic acid-synthesis and applications)

Module-4: Water chemistry and analytical techniques

8 Hours

Water Chemistry: Introduction, significance of water quality parameters-pH, turbidity, chlorides, dissolved oxygen and alkalinity for environmental and construction applications. Hard water types, determination of total hardness by EDTA method, numerical. Waste water-definition of domestic and industrial effluents. Determination of dissolved oxygen by Winkler's method, COD-definition, determination, significance and numerical.

Analytical Techniques: Introduction, potentiometric sensors - principle, instrumentation and application in estimation of iron in industrial effluents, conductometric sensors - principle, instrumentation and application in determination of acid mixture in water and industrial effluent, colorimetric sensor- principle, instrumentation and estimation of copper in industrial effluent.

Self learning: Secondary treatment of sewage water

Module-5: Materials for structural integrity

8 Hours

Metals and Alloys: Introduction, classification of metals: ferrous and non-ferrous, composition, properties, applications of iron and its alloys-wrought iron, cast iron, pig iron and steel, aluminium and its alloys-Duralumin and Magnalium.

Cement: Introduction, composition, manufacturing process of cement-wet process, process of setting and hardening of cement, special cements-composition, properties and applications, concrete as composite material.

Geopolymer Concrete: Introduction, mechanism of geopolymerization and manufacturing process.

Photochromic Coatings: Introduction, spiropyran as photochromic coating, working principle with chemical reactions and applications in construction activities.

Self learning: Properties and applications of smart concrete

Suggested learning resources:

I. Textbooks:

1. Engineering Chemistry, Dr. S. Vairam and Dr. Suba Ramesh, 2nd Edition, 2013, Wiley.

2. Engineering Chemistry, Jain and Jain 2015, 17th edition, Dhanpat Rai Publishing Company.

II. Reference books:

- 1. Materials Science and Engineering, G S Upadhyaya and Anish Upadhyaya, 2020, Viva Books Originals.
- 2. Advances in corrosion science and technology, M.G. Fontana and R.W. Staettle, Springer, 2012, ISBN: 9781461590620.

III. Web links and Video Lectures (e-Resources):

- 1. http://nptel.ac.in/
- 2. https://swayam.gov.in/

Teaching-Learning Process (Innovative Delivery Methods):

- 1. Flipped classroom
- 2. Project based learning
- 3. Simulation and Virtual labs
- 4. Partial delivery of course content by industry expert

Assessment Structure:

Component	Type of assessment	Max. Marks		Weightage	Total	Total Marks
	AAT# (Alternative Assessment Tool)	20		10		
Theory	Test 1	40	Best		50	25
111001	Test 2	40	of Two	40		
	Test 3	40 tests				
Lab	Record and observation		00 +100)	10	25	25
	CIE	5	50	15		
SEE	Sem End Exam	100		50		50 (SEE)
	Grand Tot	al Mark	XS .			100

^{*}AAT includes assignment from self-study components *Minimum CIE marks ≥ 20 to gain eligibility to write the SEE

Continuous Comprehensive Assessments (CCA):

- 1. A team of 4–5 students to collaborate for a presentation on a specific topic or work on a project and demonstrate in the class.
- 2. A detailed project report on the chosen topic or project to be submitted by the student group.
- 3. Self learning: To encourage the students to gather information on the specified topics for advanced learning.

Course objectives:

To impart the knowledge of Chemistry involved in Electrochemical cells, Corrosion and its control; sensors; sources of energy; polymers; materials used in structures and water analysis.

CO-PO mapping with strength:

COs						POs					
	1	2	3	4	5	6	7	8	9	10	11
CO1	3										
CO2		2									
CO3						2					
CO4											1
CO5	2				1						

List of Lab activities:

I. Compulsory experiments:

- 1. Estimation of iron in rust sample using potentiometric sensor.
- 2. Determination of pKa of a weak acid using pH sensor.
- 3. Estimation of mixture of strong and weak acid using conductometric sensor.
- 4. Estimation of copper in e-waste by optical sensor.
- 5. Estimation of total hardness of water by EDTA method.
- 6. Determination of chemical oxygen demand (COD) of an industrial effluent sample.
- 7. Estimation of percentage of copper in brass by iodometry.
- 8. Estimation of iron in TMT bar by external indicator method.
- 9. Determination of calorific value of a solid fuel by bomb calorimeter.
- 10. Estimation of sodium in effluent by flame photometry.

II. Open-ended experiments:

- 1. Green synthesis of copper nanoparticles for conductive ink applications.
- 2. Determination of viscosity coefficient of lubricant using Ostwald's viscometer.
- 3. Determination of corrosion penetration rate (CPR) by weight-loss method.
- 4. Smartphone based colorimetric estimation of total phenolic content in beverages.
- 5. Chemical structure drawing using software: Chem Draw/ Chem Sketch.

Suggested Learning Activities:

- 1. Case Study Presentation
- 2. Tool/Software Exploration
- 3. Literature Review
- 4. Assignments
- 5. Use of MOOCs and Online Platforms

Curriculum Structure

Course Code	Couse Title	Teach	ing an	d Learning S	cheme		
		Classr	oom	Lab	Term work	Total no.	Total
		instruction		instruction	(TW) and	of hours	Credits
		(CL) (in	(CL) (in	self learning	per	(C) (Total
		hours	per	hours per	(SL)	semester	hours/30)
		semes	ter)	semester)	(TW+SL) (in		
					hours per		
					semester)		
		L	T	P	SL		
25CY2BSCCV	Applied	40	0	30	50	120	4
	Chemistry for						
	Sustainable						
	Structures &						
	Material						
	Design						

Course Title: Introduction	Course Title: Introduction to AI and Applications					
Course Code	25CS1ETIAA/25CS2ETIAA	CIE Marks	50			
Teaching Hours/Week (L:T:P: S)	3:0:0:0	SEE Marks	50			
Total Hours of Pedagogy	40	Total Marks	100			
Credits	3	Exam Hours	3			
Examination type (SEE)	Theory	у				

Course Outcomes (Course Skill Set)

At the end of the course, the student will be able to:

CO1: Explain the concepts and types of artificial intelligence.

CO2: Illustrate basic machine learning methods for regression, classification and clustering.

CO3: Identify real-world applications across different disciplines.

CO4: Make use of prompt engineering techniques to interact with generative AI tools.

CO5: Outline recent trends in artificial intelligence and machine learning.

Module-1: 08 Hours

Introduction to AI: Definition, history, and evolution of AI (Turing Test, milestones). Foundations of AI: Logic, probability, cognitive science, Types of Artificial Intelligence, Weak AI, Strong AI, Reactive Machines, Limited Memory, Theory of Mind, Self-Awareness.

Agents and Environments: Intelligent agents, agent mechanisms, problem formulation, problem definition.

Search Strategies: Uninformed Search (DFS, BFS, Uniform Cost Search).

Module-2: 08 Hours

Heuristic Search: Generate-and-Test, Fundamentals of Hill Climbing Search, Means-Ends Analysis, Constraint Satisfaction Problems.

Knowledge Representation: Propositional Logic and First-Order Logic – syntax, semantics, inference. Uncertainty in AI: Acting under uncertainty, case study – Wumpus World.

Module-3: 08 Hours

Machine Learning Foundations: Supervised vs. Unsupervised learning, Regression, Classification, Clustering. Introduction to Algorithms: Naïve Bayes, Decision Trees, K-means Clustering.

Neural Networks: Neuron Basics, Perceptron model, Multilayer perceptron, Role of activation functions. Applications: Case studies of Machine Learning in natural language processing, computer vision, and recommendation systems.

Module-4: 08 Hours

Introduction to Generative AI: Introduction, Large Language Models (LLMs), key use cases and tasks. Prompt Engineering: Introduction to Prompt Engineering, The Evolution of Prompt Engineering, Types of Prompts, How Does Prompt Engineering Work?, Zero, one, few-shot prompting, chain-ofthought prompting, role-based prompting. Applications: Reinforcement Learning from Human Feedback (RLHF), Responsible AI, LLM-powered applications

Module-5: 08 Hours

Expert Systems and Applications: Architecture, roles, MYCIN, DART.

Trends in AI and Applications: AIaaS, AIoT, No-Code AI, Low-Code AI, Robotics, Drones. Industrial and Societal Applications: Application of AI in Healthcare, Application of AI in Finance, Application of AI in Retail, Application of AI in Agriculture, Application of AI in Education, Application of AI in Transportation, AI in Experimentation and Multi-disciplinary research.

Suggested Learning Resources: (Textbook/Reference Book):

I. Textbooks:

- 1. Stuart Russell and Peter Norvig, *Artificial Intelligence: A Modern Approach* (4th Edition), Pearson Education, 2023
- 2. Reema Thareja, Artificial Intelligence: Beyond Classical AI, Pearson Education, 2023
- 3. Ajantha Devi Vairamani and Anand Nayyar, Prompt Engineering: Empowering Communication, 1st Edition, CRC Press, Taylor & Francis Group, 2024. (DOI: https://doi.org/10.1201/9781032692319)
- 4. Elaine Rich, Kevin Knight, and Shivashankar B. Nair, *Artificial Intelligence*, McGraw Hill Education

II. Reference books:

- 1. Saptarsi Goswami, Amit Kumar Das and Amlan Chakrabarti, "AI for Everyone A Beginner's Handbook for Artificial Intelligence", Pearson, 2024
- 2. Tom Taulli, Prompt Engineering for Generative AI: ChatGPT, LLMs, and Beyond, Apress, Springer Nature
- 3. Nilakshi Jain, Artificial Intelligence: Making A System Intelligent, First Edition, Wiley.

III. Web links and Video Lectures (e-Resources):

- 1. Elements of AI https://www.elementsofai.com
- 2. CS50's Introduction to Artificial Intelligence with Python Harvard https://cs50.harvard.edu/ai/
- 3. Google Machine Learning Crash Course https://developers.google.com/machine-learning/crash-course
- 4. Learn Prompting (Open-Source Guide) https://learnprompting.org
- 5. Google AI Learn with Google AI https://ai.google/education/
- 6. Coursera Machine Learning by Andrew Ng (Stanford University) https://www.coursera.org/learn/machine-learning
- 7. OpenAI Prompt Engineering Guide (for ChatGPT) <u>https://platform.openai.com/docs/guides/gpt-best-practices</u>

- 8. Prompt Engineering for Developers DeepLearning.AI + OpenAI https://www.deeplearning.ai/short-courses/chatgpt-prompt-engineering-for-developers/
- 9. Ethics in AI Google Responsible AI Practices https://ai.google/responsibilities/responsible-ai-practices/
- 10. Google Teachable Machine (Train AI models visually without code) https://teachablemachine.withgoogle.com
- 11. Course Link:
- 12. https://www.coursera.org/learn/generative-ai-with-llms/home/

Teaching-Learning Process (Innovative Delivery Methods):

The following are sample strategies that educators may adopt to enhance the effectiveness of the teaching- learning process and facilitate the achievement of course outcomes.

- 1. Flipped Classroom
- 2. Problem-Based Learning (PBL)
- 3. Case-Based Teaching
- 4. Simulation and Virtual Labs
- 5. ICT-Enabled Teaching
- 6. Tool Demonstration

Assessment Structure:

Assessment Structure:

The assessment in each course is divided equally between Continuous Internal Evaluation (CIE) and the Semester End Examination (SEE), with each carrying 50% weightage.

- 1. To qualify and become eligible to appear for SEE, in the CIE, a student must score at least 40% of 50 marks, i.e., 20 marks.
- 2. To pass the SEE, a student must score at least 35% of 50 marks, i.e., 18 marks.
- 3. Notwithstanding the above, a student is considered to have passed the course, provided the combined total of CIE and SEE is at least 40 out of 100 marks.

Continuous Comprehensive Assessments (CCA):

CCA will be conducted for a total of 25 marks. It is recommended to include a maximum of two learning activities aimed at enhancing the holistic development of students. These activities should align with course outcomes and promote higher-order thinking and application-based learning.

Learning Activity -1: Practical Assignment on Creating Effective Prompts (Marks- 25)

INSTRUCTIONS:

- 1. Students must demonstrate the solutions to the course instructor and submit the record containing prompt creation (procedure), prompt execution and results with observations.
- 2. Course instructor must evaluate the student performance as per the rubrics.

Sl. No	Activity on Creating Effective Prompts						
I	Note: To conduct the activity students can use any of the AI tools such as ChatGPT.						
1	Basic Prompt writing: Create two different prompts to ask an AI about the topic "Electricity." The first prompt should be vague, and the second prompt should be clear and specific. Compare the responses you get and describe which prompt gave a better answer and why.						
2	Zero-Shot Prompting: Create a prompt that asks an AI to explain Ohm's Law without giving any example or background. Evaluate how well the AI explains the concept based on your prompt alone.						
3	One-Shot and Few-Shot Prompting: Provide the AI with a single example of how to calculate the resistance in a simple circuit. Then write your own prompt asking the AI to solve a similar resistance calculation. After that, add two more examples to your prompt and observe any changes in the AI's response quality.						
4	Chain-of-Thought Prompting: Develop a prompt that guides the AI step-by-step through calculating						
	current flow in a circuit using Ohm's Law with resistors in series. Then, ask a final question for the AI to solve. Analyze how breaking down the reasoning steps impacts the accuracy of the answer.						
5	Prompt Refinement: Start with an ambiguous prompt related to the "Water Cycle." Test the AI's response, note the confusion or errors, and then refine your prompt to make it clearer and more specific. Repeat this process twice and record how the AI's responses improve with each refinement.						
	Role-Based Prompting: Create three prompts asking the AI to explain "Newton's Laws of Motion," each with a different role instruction: (a) as an expert engineer, (b) as a high school teacher, (c) as a beginner. Compare the tone, detail, and style of the responses.						
6	Creative Engineering Problem Prompts: Craft a prompt that asks the AI to brainstorm ideas for designing a low-cost water purification system suitable for rural areas. Encourage creativity by adding phrases like "limited resources" and "sustainability".						
7	Ethical Prompt Design Discussion: Identify a biased prompt related to job descriptions (e.g. language with respect to a gender). Rewrite the prompt to remove bias and create a neutral, inclusive version. Explain why this revision is more ethical.						
8	Simulated Customer Support Chatbot: Develop a prompt that instructs the AI to play the role of a technical support agent helping a customer troubleshoot a failure in an electronic circuit. Include instructions to keep the tone friendly and professional and to ask diagnostic						

	questions.
9	Multi-Language Prompting: Develop a prompt that asks the AI to translate a simple engineering glossary (5 technical terms) from English to your native language. Then modify the prompt to request additional explanations of these terms in the translated language.
10	Review a curated set of different prompt types (e.g., for summarization, information extraction, paraphrasing, question answering) from a "Prompt Gallery." For each prompt type, match it with a real- world task (e.g., summarizing a lecture note, extracting names from a project report). Test at least three prompt templates on an AI tool or by role-play (students simulate being the AI), with varied wording. Record the outcomes and discuss which prompt (or template) was most effective for each task, and explain why you think it worked best. Reflect on how changing small parts of a prompt can alter model response quality, completeness, or accuracy.
11	Choose a real engineering challenge or societal problem relevant to your field (e.g., "Reducing plastic waste in campus cafeterias" or "Optimizing solar panel placement on campus rooftops"). Draft an initial prompt that asks an AI to propose practical solutions. Share the AI's (or peer's) answer in small groups and identify aspects that are missing, vague, or not actionable. Refine your prompt based on feedback (e.g., specify constraints, ask for step-by-step solutions, or require a list of pros and cons). Repeat the process one more time, refining again for further clarity or specificity. Document the entire prompt-refinement process and share the best solution generated, along with a brief analysis of how prompt improvements led to better responses.

Rubrics for Learning Activity (Creating Effective Prompts):

Component & CO-PO Mapping	Outstanding (5)	Exceeds Expectations (4)	Meets Expectations (3)	Needs Improvement (2)	Unsatisfactory (1)
Appropriate Use of Prompting Technique [CO4] [PO1, PO5]	Demonstrates precise and creative application of the intended prompting technique (e.g., zero-shot, few-shot, role-based) with full alignment to objectives.	Correctly applies the prompting technique with minor gaps or missed opportunities.	Uses the prompting technique, but with partial understanding or inconsistent application.	Limited understanding of the technique; incorrect or weak application.	No evidence of correct prompting technique use.

Analysis & Comparison of Responses [CO1] [PO2, PO4]	Provides thorough, insightful, and well- supported analysis of AI responses, comparisons highlight key strengths and weaknesses.	Provides clear analysis with relevant comparisons, though slightly less detailed.	Provides basic analysis with limited insight, comparisons are present but shallow.	Minimal analysis, comparisons are weak or incomplete.	No meaningful analysis or comparison.
Creativity & Problem-Solving [CO3, CO5] [PO3, PO11]	Demonstrates outstanding creativity and innovation in crafting prompts, especially for problem- solving or design tasks.	Demonstrates creativity and some innovation; solutions are practical.	Shows moderate creativity; prompts are functional but not innovative.	Minimal creativity; prompts are repetitive or unimaginative.	No creativity or problem- solving is evident.
Ethical Awareness & Inclusivity [CO-5] [PO7]	Identifies biases clearly and revises prompts to be fully ethical, inclusive, and culturally sensitive.	Identifies some biases and revises prompts to improve inclusivity.	Attempts bias identification, but revisions are incomplete or partly effective.	Minimal effort is made to address bias; inclusivity not fully considered.	No consideration of bias or ethics is used in prompts.
Clarity & Specificity of Prompts, Documentati on & Reflection [CO1, CO4] [PO8, PO9, PO11]	Prompts are self-explanatory, specific, and well-structured for the intended activity; no ambiguity is present. Documentation is complete, well-	Prompts are clear and mostly specific; minor ambiguity is present. Documentation is complete with some reflection on prompt refinement.	Prompts are somewhat clear but could be more specific; moderate ambiguity. Documentation is present but lacks detail or depth in reflection.	Prompts are vague and lack clarity; high ambiguity. Incomplete documentation, reflection is minimal.	Prompts are unclear, incomplete, or irrelevant to the activity. No documentation or reflection provided as per schedule

Course Title: Introduction to C Program Semester I/II			
Course Code	25CS1ESICP	CIE Marks	50
Teaching Hours/Week (L:T:P: S)	3:0:2	SEE Marks	50
Total Hours of Pedagogy	40 Hours	Total Marks	100
Credits	04	Exam Hours	3
Examination type (SEE) Theory			

Course Outcomes (Course Skill Set)

After completing the course, the students will be able to

CO1: Understand the basic concepts of computer programming, including variables, data types, and dynamics of memory and write, Compile and debug programs in the C programming language using proper syntax and conventions.

CO2: Design simple programs involving decision structures, loops, functions, arrays, structures, pointers and files.

Module-1: Introduction to C

05 Hours

Basic Organization of a Computer, Program Design Tools (Algorithms, Flowcharts), Introduction to C, Structure of C program, Writing the first C Program, Compiling and Executing C Programs, C Tokens, Basic Data Types in C, Operators in C, Evaluating Expressions, Type Conversion and Typecasting, Example Programs.

(RBT Levels: L1, L2 and L3)

Module-2: Decision Control and Looping Statements

05 Hours

Introduction to Decision Control Statements, Conditional Branching Statements (if, if-else, if-else-if, switch), Iterative Statements (while, do-while, for), Nested Loops, Break and Continue Statements, Example Programs.

(RBT Levels: L1, L2 and L3)

Module-3: Arrays

05 Hours

Introduction, Declaration of Arrays, Accessing the elements of an Array, Storing values in Arrays, Operations on Arrays (Insertion, Deletion, Searching-Binary search, Linear search), Two-Dimensional Arrays, Operations on Two-Dimensional arrays -Sum, Difference.

(RBT Levels: L1, L2 and L3)

Module-4: Functions and Strings

05 Hours

Functions: Components of Functions (Function Declaration, Function Definition, Function Call), Passing Parameters to Functions, Example Programs.

Strings: Introduction, Operations on Strings (Length of a String, Converting Lowercase to Uppercase and Vice Versa, String Concatenation, String Comparison Using built in functions).

(RBT Levels: L1, L2 and L3)

Module-5: Structures and Pointers

05 Hours

Structures: Introduction, Arrays of Structures, Example Programs.

Pointers: Introduction to Pointers, Declaring Pointer Variables, Pointer Expressions and Pointer

Arithmetic, Passing Arguments to Functions using Pointers, Example Programs.

(RBT Levels: L1, L2 and L3)

Suggested Learning Resources: (Textbook/Reference Book):

I. Textbooks:

1. **Reema Thareja**, "Computer Fundamentals and Programming in C", 2nd Edition, Oxford Higher Education, 2016

II. Reference books:

- 1. **E. Balaguruswamy**, "Programming in ANSI C", 7th Edition, McGraw-Hill Education, 2018.
- 2. **J. R. Hanly and E. B. Koffman**, "Problem Solving and Program Design in C", 7th Edition, Pearson Education, 2013.

III. Web links and Video Lectures (e-Resources):

- 1. Introduction to Programming in C
 [https://onlinecourses.nptel.ac.in/noc23_cs02/preview]
- 2. **C for Everyone: Programming Fundamentals** [https://www.coursera.org/learn/c-for-everyone]
- 3. Computer Programming Virtual Lab [https://cse02-iiith.vlabs.ac.in/exp/pointers/]
- 4. C Programming: The ultimate way to learn the fundamentals of the C language [https://www.pdfdrive.com/c-programming-the-ultimate-way-to-learn-the-fundamentals-of-the-c-language-e187584209.html]
- 5. C Programming: The Complete Reference [https://viden.io/knowledge/programming-in-c-language/attachment/28313/c-the-complete-reference-herbert-schildt-4th-edition-pdf/preview]

List of Lab activities:

Weekly: 1 Session (2 hours)

Batch Strength: 15

Students

Number of Labs: 12 (10 Sessions + 2 Lab Assessments)

Suggested Software: Code Blocks (Open Source)

Part A

- 1. Implement a C program to find the distance between two points.
- 2. Illustrate conditional branching statements to find the smallest of three numbers.
- 3. Develop a C program to solve simple arithmetic calculations, using arithmetic expressions and use of each operator leading to simulation of a commercial calculator. (No built-in math function).
- 4. Develop a C program to find all possible roots of a quadratic equation.
- 5. Develop a C program to print the sum of even numbers from M to N.
- 6. Develop a C program to compute the GCD of two numbers.

Part B

- 1. Develop a C program to search a Book ID from an organized bookshelf that has N number of books using appropriate searching technique.
- 2. Develop a C program to read a matrix and print the diagonal elements.
- 3. Write functions to implement String operations such as concatenation and String length using built-in functions.
- 4. Develop a C program for swapping values of two variables by using Parameter Passing techniques (Call by Value and Call by reference).
- 5. Develop a C program to read and display the student details using Structures.
- 6. Develop C program to test whether a number is positive, negative, or equal to zero using pointers.

Additional Programs

- 1. Develop a C program to convert Fahrenheit to Celsius.
- 2. A company decides to give a bonus to its employees on Diwali. A 5% bonus on salary is given to the Male workers and a 10% bonus on salary to the female workers. Write a program to enter the salary and gender of the employee if the salary of the employee is less than Rs.10,000 then the employee gets an extra 2% bonus on salary. Write a C program to calculate the bonus that has to be given to the employee and display the salary the employee will get.
- 3. Develop a C Program to display the following by reading the number of rows as input.

- 4. Develop a C program to find the factorial of a number using functions.
- 5. Develop a program using pointers to compute the sum, mean and standard deviation of all elements stored in an array of N real numbers.
- 6. Develop a C Program to Count the Number of Vowels, Consonants, digits, and special characters in a string. Implement structures to read, write and compute the average

salary of the employees, and list the employees earning a salary above and below the average salary for a department of N employees.

Teaching-Learning Process (Innovative Delivery Methods):

The following are sample strategies that educators may adopt to enhance the effectiveness of the teaching- learning process and facilitate the achievement of course outcomes.

- 1.Flipped Classroom
- 2. Interactive Coding Platforms

Assessment Structure:

Component	Type of assessment	Max. Marks	Tota l	Reduce d Marks	Total	Min. Marks required for eligibility	Total Mark s
	AAT	20	20	5			
CIE –	Test 1	40		20	25	10	
Theory	Test 2	40	120				
	Test 3	40					
CIE – Lab	Lab Test1 (10) Lab Test2 (10)	20	20	20	25	10	50
	Record & Performance	5	5	5			
CIE				50		20	
S	EE	10	0	50		35	50
Grand Total Marks						40	100

Course Title: Introduction to PYTHON Programming Semester			
Course Code	25CS1ESIPP/25CS2ESIPP	CIE Marks	50
Teaching Hours/Week (L:T:P: S)	3: 0: 2	SEE Marks	50
Total Hours of Pedagogy	40 Hours	Total Marks	100
Credits	04	Exam Hours	3
Examination type (SEE)			

Course Outcomes (Course Skill Set)

After completing the course, the students will be able to

CO1: Apply knowledge of Python programming for various applications.

CO2: Analyse the given Python program to identify bugs.

CO3: Design Python programs/ applications for a given requirement.

CO4: Ability to conduct practical experiments for given requirements using python

Module-1: 05 Hours

Python Basics: Variables, expressions, and statements: Values and types, Variables, Variable names and keywords, Statements, Operators and operands, Expressions, Order of operations, Modulus operator, String operations, Asking the user for input, Comments, Choosing mnemonic variable names, Debugging,

Conditional execution: Boolean expressions, Logical operators, Conditional execution, Alternative execution, Chained conditionals, Nested conditionals, Catching exceptions using try and except, Short circuit evaluation of logical expressions

Iteration: Updating variables, the while statement, Infinite loops, break, finishing iterations with continue, Definite loops using for, Loop patterns, Counting and summing loops, Maximum and minimum loops

Module-2: 05 Hours

Strings: A string is a sequence, Getting the length of a string using len, Traversal through a string with a loop, String slices, Strings are immutable, Looping and counting, The in operator, String comparison, string methods, Parsing strings, Format operator

Lists: A list is a sequence, Lists are mutable, Traversing a list, List operations, List slices, List methods, Deleting elements, Lists and functions, Lists and strings, Parsing lines, Objects and values, Aliasing, List arguments

Module-3: 05 Hours

Dictionaries: Dictionary as a set of counters, Dictionaries and files, Looping and dictionaries, Advanced text parsing

Tuples: Immutable, comparing tuples, Tuple Assignment, Dictionaries and Tuples, Multiple Assignments with Dictionaries, Using Tuples as keys in Dictionary

Functions: Function calls, Built-in functions, Type conversion functions, Random numbers, Math functions, Adding new functions, Definitions and uses, Flow of execution, Parameters and

arguments, Fruitful functions and void functions, Why functions

Module-4: 05 Hours

Object-Oriented Programming: Managing Larger Programs, Getting Started, Using Objects, Starting with Programs, Subdividing a Problem, Our First Python Object, Classes as Types, Object Lifecycle, Many Instances, Inheritance, Classes and Methods, Operator overloads

Exceptions: Exception Class Hierarchy, User-Defined Exceptions

Module-5: 05 Hours

Regular expressions: Character matching in regular expressions, Extracting data using regular expressions, combining searching and extracting, Escape character

Files: Persistence, Opening files, Text files and lines, Reading files, Searching through a file, Letting the user choose the file name, Using try, except, and open, Writing files

Suggested Learning Resources: (Textbook/Reference Book):

I. Textbooks:

- 1. Python for Everybody: Exploring Data Using Python 3, Charles R. Severance, Fourth Edition, University of Michigan, 2016
- 2. Learning to Program using Python, Cody Jackson, Second Edition, Packt Publishing, 2018

II. Reference books:

- 1. Programming Python, MarkLutz, First Edition, O'Reilly Media, 2010
- 2. Python Essential Reference, David M. Beazley, Fourth Edition, Pearson, 2009
- 3. Core Python Applications Programming, Wesley J Chun, ThirdEdition, Pearson, 2015

III. Web links and Video Lectures (e-Resources):

- 1. Think Python, Allen B. Downe, Second Edition, Green Tea Press, Needham, Massachusetts, 2014 [https://greenteapress.com/thinkpython2/thinkpython2.pdf]
- 2. A Hands-On, Project-Based Introduction to Programming, EricMatthes, FirstEdition, No Starch Press, 2016 [https://t.ly/fEOq (URL Shortened)]

IV. MOOC Courses:

- 1. An Introduction to Interactive Programming in Python (Part 1), Coursera, 2021 https://www.coursera.org/course/interactivepython1
- 2. An Introduction to Interactive Programming in Python (Part 2), Coursera, 2021 https://www.coursera.org/course/interactivepython2
- 3. Introduction to Python Programming,edx,2021 https://www.edx.org/professionalcertificate/introduction- to python-programming

List of Lab activities:

- 1. Write a program that asks the user how many Fibonacci numbers to generate and then generates them. Make sure to ask the user to enter the number of numbers in the sequence to generate.
- 2. Write a program that asks the user for a number and then prints out a list of all the divisors of that number.
- 3. Write a program to compute distance between two points taking input from the user (Pythagorean Theorem).
- 4. Write a Program for checking whether the given number is a even number or not.
- 5. Write a program using a while loop that asks the user for a number, and prints a countdown from that number to zero.
- 6. Write a program to find the sum of all primes below two million.
- 7. a) Write a program to count the numbers of characters in the string and store them in a dictionary data structure.
- 7. b) Write a program to use split and join methods in the string and trace a birthday with a dictionary data structure.
- 8. a) Write a Python program that takes this list and makes a new list that has only the even elements of this list in it.
- 8. b) Write a function that takes an ordered list of numbers (a list where the elements are in order from smallest to largest) and another number. The function decides whether or not the given number is inside the list and returns (then prints) an appropriate Boolean.
- 9. a) Write a program to combine lists that combines these lists into a dictionary.
- 9. b) Write a program to print each line of a file in reverse order.
- 10. a) Write a program to count frequency of characters in a given file.
- 10. b) Write a program to compute the number of characters, words and lines in a file.

Course Title: Communication Skills Semester I/II				
Course Code	25MA1AECEN/25MA2AECEN	CIE Marks	50	
Teaching Hours/Week (L:T:P: S)	1-0-0	SEE Marks	50	
Total Hours of Pedagogy		Total Marks	100	
Credits	01	Exam Hours	3	
Examination type (SEE)				

Course Outcomes (Course Skill Set)

- CO 1 Build essential verbal, non-verbal, and phonetic communication skills for clarity and effectiveness
- CO 2 Use interpersonal skills in group discussions, presentations, and professional interactions
- CO 3 Apply formal writing, email etiquette, and creative content development for employability
- CO 4: Communicate effectively in digital platforms, following netiquette and academic integrity
- **CO 5:** Prepare job applications, resumes, and perform confidently in interviews

Module-1: 03 Hours

COMMUNICATION SKILLS: Glimpses of Essential English for Engineers (General Overview). Communication Skills: Process, Verbal and Non-Verbal, Proxemics, Chronemics and Barriers. Writing: Word Classification – Parts of Speech, Sentence structures. Speaking & Listening: Listening to English Pronunciation – English Phonemes – Intelligible Accent – Speech Organs- Syllable Structures, Stress, Intonation, and Practice

Teaching	TBTL (Task-Based Teaching Learning) & Eclectic Approach				
Methodology					
Language Lab	Quiklrn.com				
	ALL 44 sounds of English in 75 minutes -				
	https://www.youtube.com/watch?v=QxQUapA2w4&t=51s.				
Digital Tools	AI-based grammar and writing tools (e.g., Grammarly, ChatGPT,				
	Quillbot) to analyze and classify parts of speech.				
	AI-based pronunciation tools (Google Speech-to-Text) for real-time				
	feedback				
Reading Material	"The Chimney Sweeper" by William Blake Martin Luther King Jr's "I				
	Have a Dream" Speech				
Assessment	Role Play: Formal/informal scenarios, Group Discussion (GD), Case				
Techniques and Studies Analysis: Identify barriers and suggest solutions, M					
Tools Presentation: Focused on proxemics.					
	Observation Rubric (for body language, tone, time cues), (Sample Rubric,				
	please refer the annexure), Video Recording + Self-evaluation Sheet.				

Module-2: 03 Hours

INTERPERSONAL SKILLS: **Speaking**: Role Play Exercises Based on Workplace Contexts, Introducing Oneself - PEP Talks- Personal Empowerment, Participating in Group Discussion and Debates, Giving Technical Presentation. **Reading:** Reading the Interview of an Achiever (Skimming and Scanning) (Case Studies). **Writing:** Writing a Short Biography of an Achiever Based on given reflections. **Grammar:** Sentence patterns. **Vocabulary** Development: Idioms and Phrases.

Sentence patterns. Vocabulary Development. Idioms and Finases.					
TBTL (Task-Based Teaching Learning) & Eclectic Approach					
Quiklrn.com					
Google Meet / Zoom + AI Transcription- Practice group discussions with live					
transcription.					
Grammarly - Highlights grammar issues with explanations.					
Oxford Learner's Dictionaries					
(<u>https://www.oxfordlearnersdictionaries.com/</u>) - Includes etymology,					
Group discussion performance (listening, turn-taking, clarity) Technical					
resentations (confidence, structure, clarity) Role plays (relevance, tone,					
spontaneity) Case studies Oral communication rubric (clarity, relevance,					
tone, confidence, non-verbal cues), Activity: Read a short interview of an					
achiever (e.g., A. P. J. Abdul Kalam, Sudha Murthy) LMS (Learning					
Management Systems): Moodle or Google Classroom for submissions					
and reflections.					
Video Submissions: Students submit videos of role plays or presentations					

Module-3: 03 Hours

ENGLISH FOR EMPLOYABILTY: Writing: Formal Letter writing (Enquiry, Order, and Complaint). Tenses – Reported Speech- Voice - Email Etiquettes, Structure, Writing and Responding to Emails. Paragraph Writing (Descriptive, Argumentative, Expository, Short Story, and Narrative), Blog Writing. Reading: Proof Reading (Spelling, Punctuation, Grammar). Error Identification Exercises. Speaking: Questions & Requests (non-Wh questions and Question tags).

Pedagogy	TBTL (Task-Based Teaching Learning) & Eclectic Approach		
Language Lab Quiklrn.com			
Digital Tools Grammarly – Check grammar, tone, spelling Canva – Free templates to create posters, ads, infographics Ad Express – Visual storytelling and ad design			
Assessment Techniques and Tools	 Paragraph Writing - Descriptive, Argumentative, Expository, Short Story, Narrative - Paragraph rubric (structure, logic, vocabulary, grammar) Writing - Tool: Digital submission + rubric for content originality, reader engagement, clarity. Speaking Skills - Oral assessment rubric (intonation, clarity, accuracy) Email simulator (Google Forms/Canvas/Docs template) 		

Module-4: 03 Hours

ENGLISH IN DIGITAL WORLD: Writing: Framing of search terms / keywords in search engines/ Commands for search on open AIs - Tools to support synchronous communication such as webinar platforms, and asynchronous communication such as forums and social media - Online communication

- Types pros and cons of online communication. Acceptable online roles and behaviours Netiquettes
- Etiquettes of social media. Problems and opportunities in handling digital resources -Tools to check grammar. Writing: Citing information accurately from source material Plagiarism Infringement, Importance of academic integrity

Pedagogy	TBTL (Task-Based Teaching Learning) & Eclectic Approach				
Language Lab	Quiklrn.com				
	Google Meet - Integrated with Gmail, free for students				
Digital Tools	Google Classroom - Forum, assignments, comments				
Assessment Techniques	Write a short essay (150-200 words) on the problems and				
and Tools	opportunities.				
	Evaluation rubric (structure, coherence, grammar).				
	Grammar assessment rubric (before vs after comparison,				
	understanding of corrections).				

Module-5: 03 Hours

APPLYING FOR JOBS: Listening: TED Talks. Speaking: Mock Interview, Telephone Interviews. Reading: Reading a Job Interview- language used in formal professional settings, formal vs. informal tone, non- verbal communication cues, Statement of Purpose, Company Profile and Completing Comprehension Exercises Writing: Job Applications and Resumes Grammar: Conditional Clauses, Modal verbs Vocabulary Development: Technical Vocabulary, Purpose Statement

Pedagogy	TBTL (Task-Based Teaching Learning) & Eclectic Approach		
Language			
Lab			
Language Lab	Quiklrn.com		
Assessment	Listening to professional talks, analyzing tone and structure -		
Techniques and	https://www.ted.com/talks		
Tools	Non-verbal cues in professional reading -		
Assessment	TED Talk worksheet - Listening rubric (comprehension, inference,		
Techniques	note-taking), Reading comprehension tests, Resume & Application		
and Tools	rubric (content, layout, tone, language), Grammar MCQs / Editing		
	worksheet, Scenario-based MCQs or roleplay, Vocabulary worksheet		

Suggested Learning Resources: (Textbook/Reference Book):

I. Textbooks:

- 1. Kumar, A. R. (2008). English for engineers and technologists. Orient BlackSwan.
- 2. Raman, M., & Sharma, S. (2015). *Technical communication: Principles and practice* (3rd ed.). Oxford University Press.

- 3. Floyd, K., & Cardon, P. W. (2019). *Business and professional communication* (3rd ed.). Principles of Scientific and Technical Writing, 1e, By Pratap K. J. Mohapatra, Sanjib Moulick, © 2025 | Published: December 23, 2024
- 4. Effective Technical Communication, 3e, By Ashraf M. Rizvi, Priyadarshi Patnaik, © 2024 | Published: September 12, 2024
- 5. Yadav, D. P. (2022). A course in English pronunciation. Notion Publications

II. Reference books:

- 1. Oxford Advance Learners Dictionary
- 2. Cambridge English Skills Real Listening and Speaking by Miles Craven
- 3. Communicative English for Professionals by Nitin Bhatnagar and Mamta Bhatnagar

III. Web links and Video Lectures (e-Resources):

- 1. Google Docs + Voice Typing https://docs.google.com
- 2. LearnEnglish https://learnenglish.britishcouncil.org/
- 3. TakeIELTS https://www.britishcouncil.in/exam/ielts
- 4. British Council Apps bbcLearnEnglishonline Grammar

LearnEnglish Podcasts IELTS

Word Power

Bbclearningenglishgrammer

online Sounds Right (Phonemic Chart)

Teaching-Learning Process (General Instructions):

The strategies teacher can use to accelerate the attainment of the various course outcomes and make Teaching —Learning more effective:

Teachers shall adopt suitable pedagogy for effective teaching - learning process. The pedagogy shall involve the combination of different methodologies which suit modern technological tools and software's to meet the present requirements of the Global employment market.

- 1. Direct instructional method (Low/Old Technology),
- 2. Flipped classrooms (High/advanced Technological tools),
- 3. Blendedlearning (Combination of both),
- 4. Enquiry and evaluation-based learning, (
- 5. Personalized learning,
- 6. Problems based learning through discussion,
- 7. Following the method of expeditionary learning Tools and techniques
- 8. Use of audio-visual methods through language Labs in teaching of LSRW skills.

Apart from conventional lecture methods, various types of innovative teaching techniques

through videos, animation films may be adapted so that the delivered lesson can progress the students in theoretical applied and practical skills in teaching of communicative skills in general.

Assessment Structure:

Component	Type of assessment	Max. Marks	Total
CIE – Theory	CIE 1	25	
	CIE 2	25	100
SEE	End Exam	50	

Two CIEs will be conducted for 25 Marks each. SEE paper shall be set for 50 Questions, each of the 01 marks. The pattern of the Question paper is MCQ (Multiple Choice Questions). The time allotted 01 hour.

Course Title: Indian Constit	Semester	I/II	
Course Code	25MA1HSICE /25MA2HSICE	CIE Marks	50
Teaching Hours/Week (L:T:P: S)	1-0-0	SEE Marks	50
Total Hours of Pedagogy		Total Marks	100
Credits	NCMC	Exam Hours	3
Examination type (SEE)			

Course Outcomes (Course Skill Set)

After completing the course successfully, the student will be able to understand the topics:

CO 1: Understand the Constitution's origin, structure, principles, and its role in ensuring dignity and equal rights

CO 2: Analyze the government structure, the election process, the amendments, and the emergency provisions in the Indian democracy

CO 3: Develop an understanding of ethical responsibility through the principles of engineering ethics

Module-1: 03 Hours

Introduction to the Indian Constitution:

The

Importance of the Constitution. Introduction to the Indian Constitution, The Making of the Constitution, The Role of the Constituent Assembly. The Preamble of the Indian Constitution. Salient features of the India Constitution.

Module-2: 03 Hours

FR's, FD's, and DPSP's:

Fundamental Rights and their reasonable restrictions in various complex scenarios.

Directive Principles of State Policy (DPSP).

Fundamental Duties: Their Role and Importance in Nation-Building

Module-3: 03 Hours

Union Executive & State Executive:

Union Executive - President, Vice President, Prime Minister, Parliament, Supreme Court of India.

State Executive - Governor, Chief Minister, State Legislative Assembly, and High Courts.

Module-4: 03 Hours

Elections, Amendments, and Emergency Provisions:

Election Commission, Elections & Electoral Process.

Constitutional Amendments: Importance and Key Changes in India. Emergency Provisions.

Module-5: 03 Hours

Professional Ethics:

Ethics & Values. Types of Ethics. Scope & Aims of Professional & Engineering Ethics. Clash of Ethics. Moral Development. The impediments to Responsibility.

Trust & Reliability in Engineering, IPRs (Intellectual Property Rights), Risks, Safety, and Liability in Engineering.

Suggested Learning Resources: (Textbook/Reference Book):

I. Textbooks:

- 1. An Introduction to Constitution of India and Professional Ethics" by Merunandan K.B. and B.R. Venkatesh, Meragu Publications, 3rd edition, 2011.
- 2. "Constitution of India & Professional Ethics & Human Rights" by Phaneesh K. R., Sudha Publications, 10th edition, 2016.
- 3. "Engineering Ethics", M.Govindarajan, S.Natarajan, V.S.Senthilkumar, Prentice Hall, 2004

II. Reference books:

- 1. "Samvidhana Odu" for Students & Youths by Justice HN Nagamohan Dhas, Sahayana, kerekon.
- 2. "Constitution of India, Professional Ethics and Human Rights" by Shubham Singles, Charles E. Haries, and et al, published by Cengage Learning India, Latest Edition 2019.
- 3. "Introduction to the Constitution of India", (Students Edition.) by Durga Das Basu (DD Basu): Prentice–Hall, 2008.
- 4. "Constitution of India" (for Competitive Exams) Published by Naidhruva Edutech Learning Solutions, Bengaluru. 2022

Teaching-Learning Process (Innovative Delivery Methods):

The strategies teacher can use to accelerate the attainment of the various course outcomes and make Teaching —Learning more effective:

Teachers shall adopt suitable pedagogy for effective teaching - learning process. The pedagogy shall involve the combination of different methodologies which suit modern technological tools like

- 1. Direct instructional method (Low/Old Technology),
- 2. Flipped classrooms (High/advanced Technological tools),
- 3. Blendedlearning (Combination of both),
- 4. Enquiry and evaluation-based learning,
- 5. Personalized learning,
- 6. Learning through discussion on Case studies

Assessment Structure:

Component	Type of assessment	Max. Marks	Total	50 % Weightage	Total
CIE – Theory	Test 1	25	50	25	50
	Test 2	25		25	

Question Paper Pattern:

CIE Multiple Choice Questions

CIE methods/question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.

Course Title: IDEA	Semester	I/II	
Course Code	25ME1AEIDL/25ME2AEIDL CIE Marks		50
Teaching Hours/Week (L:T:P: S)	0:0:2	SEE Marks	50
Total Hours of Pedagogy		Total Marks	100
Credits 01		Exam Hours	3
Examination type (SEE)	Practical / Presentation / Seminar		

Course Outcomes (Course Skill Set)

CO1: Identify real-world problems and formulate technology-driven solutions using IoT, Robotics, AR/VR, Drones, and Prototyping.

CO2: Design and build working prototypes using advanced tools like Arduino, Raspberry Pi, 3D printers, sensors, VR headsets, drones, and PCB design tools.

CO3: Evaluate the practicality, scalability, and social impact of solutions, and communicate them effectively to diverse audiences

Module-1: IoT and Robotics

Introduction to robotics and components: Arduino, motor driver, sensors, chassis, wheels, and power supply setup, Basics of Arduino programming, Blink an LED, Circuit connections and assembling the robotic car chassis, Control DC motors, IR sensor, Pulse Width Modulation (PWM), Wireless control using Bluetooth / Wi-Fi modules, Troubleshooting, Assembly and Testing, Calibration of robotic movements.

Hands-on Project:

Building and programming autonomous and Bluetooth-controlled robotic cars with line-following and obstacle-avoidance features.

Module-2: Augmented and Virtual Reality (AR/VR)

Introduction to Unity, Working with physics (rigid body, collider), Camera and UI basics, creation of Assets and Prefabs, Basic Scripting with C# (movement and rotation), prompts to debug the components.

Hands on project: Developing simple AR apps using mobile platforms, VR environments demo

Module-3: Drones and UAV Technology

Understanding drone mechanics, aero dynamics, flight controllers, calibration and sensors.

Hands-on project: Assembling and disassembling of drones, calibration, simulation and fly experience.

Module-4: Prototyping

Introduction to prototyping tools and workflow: from concept to 3D printed model, 3D scanning: capturing physical objects and generating STL files, Editing and refining scanned models using CAD software (Fusion 360 /SolidWorks /Mesh mixer), Using slicer software for print preparation, parameter setting, and G-code generation, Operating 3D printers: machine setup, filament loading, calibration, and printing process, Post-processing techniques: support removal, surface finishing, and part assembly

Hands-on Project: scanning, and fabricating a functional 3D printed prototype from a real-world object.

Assessment Structure:

1. **CIE**

Sl. No. Module		CIE Marks
1	Lab projects	30
2 Minor projects		20
Total		50

2. **SEE**

Sl. No.	Parameter	Marks
1	Prototype Demonstration	20
2	Final Presentation & report	20
3 Viva Voce		10
	Total	50

Course Title: Mathematical Foundation 2	Semester	II	
Course Code	25MA2BSMCS	CIE Marks	50
Teaching Hours/Week (L:T:P: S)	SEE Marks	50	
Total Hours of Pedagogy	Total Marks	100	
Credits 04		Exam Hours	3
Examination type (SEE)		<u>.</u>	

Course Outcomes (Course Skill Set)

After completing the course successfully, students will be able to:

CO 1: Apply the concepts of Calculus, Linear Algebra and Numerical methods in solving problems

CO 2: Relate the importance of Calculus, Linear Algebra and Numerical methods in Computer science stream

CO 3: Demonstrate the understanding of Calculus, Linear Algebra and Numerical methods through programming skills using modern tool

Module-1: Integral Calculus

11 Hours

Prerequisites: Definite and indefinite integrals of single-variable functions, basic conic sections and polar coordinates.

Multiple Integrals: Evaluation of double and triple integrals, evaluation of double integrals by change of order of integration, changing into polar coordinates.

Applications: Area by double integral (polar curves), Volume by triple integral.

Beta and Gamma functions: Definitions, properties, relation between Beta and Gamma functions.

Self-Study: Moment of Inertia along a particular direction, Duplication formula.

Module-2: Vector Space

10 Hours

Prerequisites: Binary operations, groups, matrices and system of equations.

Definition and examples, subspace, linear combinations, linear span, linearly independent and dependent sets, row space, column space and null space of a matrix, basis and dimension.

Applications: Coordinate vector.

Self-study: Verification of vector spaces.

Module-3: Linear Transformations

10 Hours

Prerequisites: Functions, matrix algebra, system of linear equations and their solutions

Definition and examples, Matrix of a linear transformation. Rank and nullity of a linear operator, rank-nullity theorem and eigen spaces of a linear transformation.

Applications: Singular, non-singular and onto linear transformations, invertible linear transformation **Self-study:** Geometric linear transformation in \mathbb{R}^2 for image processing

Module-4: Numerical Methods -1

09 Hours

Prerequisites: Algebraic and transcendental functions, roots of an equation.

Solution of algebraic and transcendental equations: Newton-Raphson method.

Finite differences, Newton's forward and backward interpolation. Lagrange's interpolation and Lagrange's inverse Interpolation.

Numerical integration: Simpson's (1/3)rd rule, Simpson's (3/8)th rule and Weddle's rule.

Applications: Estimating the velocity, acceleration, area, volume.

Self-Study: Regula-Falsi method and Newton's divided difference formula.

Module-5: Numerical Methods -2

08 Hours

Prerequisites: Basic differentiation and integration, analytical solutions for initial value problem.

Numerical solution of ordinary differential equations of first order and first degree - Taylor's series method, Picard's method, Modified Euler's method, Runge-Kutta method of fourth order and Milne's predictor-corrector method.

Applications: Finding approximate solution of ODEs related to engineering field. **Self-Study:** Adam-Bashforth method and Numerical solution of higher order ODEs

Suggested Learning Resources: (Textbook/Reference Book):

I. Textbooks:

- 1. **B. S. Grewal**: "Higher Engineering Mathematics", Khanna publishers, 45th Ed., 2024.
- 2. E. Kreyszig: "Advanced Engineering Mathematics", John Wiley & Sons, 10th Ed., 2018.
- 3. D. C. Lay: "Linear Algebra and its Applications", Pearson Publishers, 5th Ed., 2024

II. Reference books:

- 1. V. Ramana: "Higher Engineering Mathematics" McGraw-Hill Education, 11th Ed., 2017
- 2. S. Pal & S. C. Bhunia: "Engineering Mathematics" Oxford University Press, 3rd Ed., 2016.
- 3. **N. P. Bali and M. Goyal**: "A textbook of Engineering Mathematics" Laxmi Publications, 10th Ed., 2022.
- 4. James Stewart: "Calculus" Cengage Publications, 7th Ed., 2019
- 5. **Gareth Williams:** "Linear Algebra with applications", Jones Bartlett Publishers Inc., 6th Ed., 2017.
- 6. **D.G. Zill and W.S.Wright:** "Advanced Engineering Mathematics", Jones Bartlett Publishers Inc., 7th Ed., 2020

III. Web links and Video Lectures (e-Resources):

- 1. VTU e-shikshana Program
- 2. Integral Calculus: https://www.classcentral.com/course/youtube-integral-calculus-90616b and https://www.edx.org/course/mathtrackx-integral-calculus
- 3. Integral and Vector Calculus: https://onlinecourses.nptel.ac.in/noc22 ma03/preview
- 4. Vector Calculus: https://www.classcentral.com/course/vector-calculus-engineers-17387
- 5. Vector spaces and Linear Transformations: https://ocw.mit.edu/courses/18-06-linear-algebra-spring-2010/ and

https://www.classcentral.com/subject/linear-algebra

- 6. Numerical Methods: https://www.classcentral.com/course/numerical-methods-engineers-32822,
- 7. https://nptel.ac.in/courses/111107105 and https://ocw.mit.edu/courses/18-335j-introduction-to-numerical-methods-spring-2019/

Teaching-Learning Process (Innovative Delivery Methods):

1. Chalk and talk method / Power Point Presentation

Assessment Structure:

Component	Type of assessment	Max. Marks	Total	50 % Weightage	Total
	Quiz	10		5	
	AAT	10		5	
CIE – Theory	Test 1	40	100	20	50
Theory	Test 2	40		20	
	Test 3	40		20	
SEE	End Exam	100		50	

- 1. CIE methods /question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.
- 2. The best two scores out of three tests will be considered for CIE.

Semester End Examination:

- 1. Two complete questions will be given from each unit.
- 2. One complete question from each unit to be answered.

Course Title: Mathematical for Mechanica	Semester	II	
Course Code	CIE Marks	50	
Teaching Hours/Week (L:T:P: S)	SEE Marks	50	
Total Hours of Pedagogy		Total Marks	100
Credits	04	Exam Hours	3
Examination type (SEE)			

Course Outcomes (Course Skill Set)

After completing the course successfully, students will be able to:

CO 1: Apply the concepts of Calculus, Partial differential equations and Numerical methods in solving problems

CO 2: Relate the importance of Calculus, Partial differential equations and Numerical methods in Civil, Electrical and Mechanical streams

CO 3: Demonstrate the understanding of Calculus and Numerical methods through programming skills using modern tool

Module-1: Integral Calculus

11 Hours

Prerequisites: Definite and indefinite integrals of single-variable functions, basic conic sections and polar coordinates.

Multiple Integrals: Evaluation of double and triple integrals, evaluation of double integrals by change of order of integration, changing into polar coordinates.

Applications: Area by double integral (polar curves), Volume by triple integral.

Beta and Gamma functions: Definitions, properties, relation between Beta and Gamma functions.

Self-Study: Moment of Inertia along a particular direction, Duplication formula.

Module-2: Vector Calculus

10 Hours

Prerequisites: Scalars, vectors and its operations, multivariable calculus, basic integration

Scalar and vector fields. Gradient, divergence and curl - physical interpretation, solenoidal vector fields, irrotational vector fields and scalar potential.

Vector Integration: Line integrals, Green's theorem and Stokes' theorem (statement only): problems.

Applications: Directional derivative and work done by a force.

Self-study: Velocity, acceleration of a moving particle and Gauss divergence theorem

Module-3: Partial Differential Equations (PDEs)

10 Hours

Prerequisites: Basics of differential equations

Formation of PDEs by elimination of arbitrary constants and functions. Solution of non-homogeneous PDE by direct integration, homogeneous PDE by the method of Separation of variables.

Applications: Mathematical modelling of one-dimensional heat and wave equations.

Self-study: Solution of one-dimensional heat and wave equations by the method of separation of variables.

Module-4: Numerical Methods -1

09 Hours

Prerequisites: Algebraic and transcendental functions, roots of an equation.

Solution of algebraic and transcendental equations: Newton-Raphson method.

Finite differences, Newton's forward and backward interpolation. Lagrange's interpolation and Lagrange's inverse Interpolation.

Numerical integration: Simpson's (1/3)rd rule, Simpson's (3/8)th rule and Weddle's rule.

Applications: Estimating the velocity, acceleration, area, volume.

Self-Study: Regula-Falsi method and Newton's divided difference formula

Module-5: Numerical Methods -2

08 Hours

Prerequisites: Basic differentiation and integration, analytical solutions for initial value problem.

Numerical solution of ordinary differential equations of first order and first degree - Taylor's series method, Picard's method, Modified Euler's method, Runge-Kutta method of fourth order and Milne's predictor-corrector method.

Applications: Finding approximate solution of ODEs related to engineering field.

Self-Study: Adam-Bashforth method and Numerical solution of higher order ODEs.

Suggested Learning Resources: (Textbook/Reference Book):

I. Textbooks:

- 1. B. S. Grewal: "Higher Engineering Mathematics", Khanna publishers, 45th Ed., 2024.
- 2. E. Kreyszig: "Advanced Engineering Mathematics", John Wiley & Sons, 10th Ed., 2018.

II. Reference books:

- 1. V. Ramana: "Higher Engineering Mathematics" McGraw-Hill Education, 11th Ed., 2017
- 2. S. Pal & S. C. Bhunia: "Engineering Mathematics" Oxford University Press, 3rd Ed., 2016.
- **3.** N. P. Bali and M. Goyal: "A textbook of Engineering Mathematics" Laxmi Publications, 10th Ed., 2022.
- **4.** C. R. Wylie, L. C. Barrett: "Advanced Engineering Mathematics" McGraw Hill Book Co., New York, 6th Ed., 2017
- 5. James Stewart: "Calculus" Cengage Publications, 7th Ed., 2019.
- **6. D.G. Zill and W. S. Wright:** "Advanced Engineering Mathematics", Jones Bartlett Publishers Inc., 7th Ed., 2020

III. Web links and Video Lectures (e-Resources):

- 1. http://academicearth.org/
- 2. VTU e-Shikshana Program
- 3. VTU EDUSAT Program
- 4. https://nptel.ac.in/courses/111105160
- 5. https://nptel.ac.in/courses/127106019
- 6. https://ocw.mit.edu/courses/18-335j-introduction-to-numerical-methods-spring-2019/
- 7. https://ocw.mit.edu/courses/18-330-introduction-to-numerical-analysis-spring-2012/pages/syllabus

Teaching-Learning Process (Innovative Delivery Methods):

1. Chalk and talk method / Power Point Presentation

Assessment Structure:

Component	Type of assessment	Max. Marks	Total	50 % Weightage	Total
	Quiz	10		5	
	AAT	10		5	
CIE – Theory	Test 1	40	100	20	50
Theory	Test 2	40		20	
	Test 3	40		20	
SEE	End Exam	100		50	

^{1.} CIE methods /question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.

2. The best two scores out of three tests will be considered for CIE.

Semester End Examination:

- 1. Two complete questions will be given from each unit.
- 2. One complete question from each unit to be answered.

Course Title: Elements of	Semester	II	
Course Code	25CH2PSCHE	CIE Marks	50
Teaching Hours/Week (L:T:P: S)	3:0:2:0	SEE Marks	100
Total Hours of Pedagogy	120 h	Total Marks	100
Credits	3-0-1 (Total 4)	Exam Hours	3
Examination type (SEE)		-	

Course Outcomes (Course Skill Set)

After completing the course, the students will be able to

CO1: Understand the relevance of chemicals engineering and role of a Chemical Engineer.

CO2: Identify the modern chemical engineering plants and importance of simulation.

CO3: Evaluate the dimensionless analysis and its applications.

CO4: Evaluate and asses the environmental & safety aspects in Chemical Engineering.

CO5: Present the experimental observations in the form of a lab report.

Module-1: Introduction to Chemical Engineering & Role of a Chemical Engineer

8 Hours

Introduction: Chemical Engineering in Everyday life, History of Chemical Engineering, Major Chemical Engineering Contributions to Society, Significance of chemical engineering in food, health, energy and environment. Sustainable development framework; United Nations SDGs, Emerging Technologies to implement sustainable development goals.

Module-2: Modern chemical engineering plants

8 Hours

Batch processing and continuous processing, transition from batch to continuous processing, Basic principles of chemical processes; Unit processes and unit operations; Case studies: Manufacture of paint, Sulfuric acid and Soda ash. Measurement of temperature, pressure, flow and level in a process.

Module-3: Role and importance of Natural Sciences in Chemical Engineering

8 Hours

Engineering

Introduction, Ideal gas law, Infinitesimal Control Volume, Macroscopic Control Volume, Closed Systems and Open Systems, Conservation of Mass and energy and related numerical, Fundamentals of mass transfer, Fick's law of diffusion. Heat transfer, modes of heat transfer and related numerical.

Module-4: Fluid flow phenomena and Dimensional Analysis

8 Hours

Types of fluids - shear stress and velocity gradient relation, Types of fluid flow, Measurement of fluid flow: Rotameter, pitot tube. Dimensionless Numbers, Primary and derived quantities, Dimensional homogeneity, Methods of dimensional analysis (Rayleigh's) and its applications, related numerical.

Module-5: Safety in Chemical Process Industries

7 Hours

Safety in Chemical Process Industries, Lessons for the Management, Importance of Quantitative Information, Case Study 1: Bhopal gas tragedy; Case Study 2: Environmental Hazards of a Green Project. Case study 3: Bottling plant of Coco-Cola. Basic safety and process management (Process design for safety, introduction to HAZOP and safety management processes).

Suggested Learning Resources: (Textbook/Reference Book):

I. Textbooks:

- 1. Pushpavanam S, Introduction to Chemical Engineering, PHI Learning Private Limited, New Delhi, 2010.
- 2. Morton Denn, Chemical Engineering: An Introduction, Cambridge University Press, 2011.

II. Reference books:

- 1. W. L. McCabe, J. C. Smith and P. Harriot, Unit Operations of Chemical Engineering, 7th Edition, McGraw Hill, New York, 2021.
- 2. Walter L. Badger, Julius T. Banchero, Julius T. Bancheo, Introduction To Chemical Engineering, Tata McGraw-Hill, 1955.
- 3. Richard M. Felder and Ronald W. Rousseau, Elementary Principles of Chemical Processes, John Wiley & Edition, 2005.
- 4. Himmelblau, D.M., Basic Principles and Calculations in Chemical Engineering, 6 th Edition, Prentice Hall of India, New Delhi, 1997.
- 5. Uche, N. Introduction to Chemical Engineering. Scrivener Publishing, Wiley, 2019
- 6. Ghoshal, S.K., Sanjal, S.K. and Datta, S. Introduction to Chemical Engineering. Tata McGraw-Hill Publication, 2017.
- 7. Introduction to Sustainable Engineering, Rag. R.L. and Ramesh Lakshmi Dinachandran, PHILearning Pvt. Ltd., 2ndEdn, 2016

III. Web links and Video Lectures (e-Resources):

- 1. https://nptel.ac.in/courses/103108097
- 2. https://onlinecourses.nptel.ac.in/noc25 ch07/preview
- 3. https://www.youtube.com/watch?v=SdP3BbCt4Ak

List of Lab activities:

- 1. Introduction to Microsoft excel spreadsheet, tool bars and its functions
- 2. Spread sheet for Unit Conversion and dimensional analysis
- 3. Spread sheet for Material Balance for a Mixing Process
- 4. Spread sheet for Steady-State Material Balance on a Tank
- 5. Spread sheet for Steady-State Energy Balance in a heating tank
- 6. Introduction to MATLAB, solving matrices, tool bars and its functions.
- 7. MATLAB Program for determining the regression coefficient.
- 8. MATLAB Program for the calibration of a rotameter.
- 9. MATLAB Program for variation of height with respect to time in a tank (Solution of a differential equation).
- 10. MATLAB Program for the solving ordinary differential equation.

Teaching-Learning Process (Innovative Delivery Methods):

The following are sample strategies that educators may adopt to enhance the effectiveness of the teaching-learning process and facilitate the achievement of course outcomes. The following are sample strategies that educators may adopt to enhance the effectiveness of the teaching-learning process and facilitate the achievement of course outcomes.

- 1. Flipped class
- 2. Chalk and talk
- 3. NPTEL and other videos for theory topics
- 4. Partial Delivery of course by Industry expert/ industrial visits
- 5. ICT-Enabled Teaching.
- 6. Activity based learning.
- 7. Keep fundamentals as the core teaching content.
- 8. Present recent trends as short "industry snapshot" segments at the end of each module (e.g., 15–20 minutes), not as examinable depth topics.
- 9. Use case studies, videos, or demonstrations for the advanced concepts so students see applications without getting bogged down in mechanisms.
- 10. Make the trends part of assessments via assignments, mini-seminars, or group presentations, so the main lecture hours focus on the basics.

Assessment Structure:

The assessment in each course is divided equally between Continuous Internal Evaluation (CIE) and the Semester End Examination (SEE), with each carrying 50% weightage

- To qualify and become eligible to appear for SEE, in the CIE, a student must score at least 40% of 50 marks, i.e., 20 marks.
- To pass the SEE, a student must score at least 35% of 50 marks, *i.e.*, 18 marks.
- Notwithstanding the above, a student is considered to have passed the course, provided the combined total of CIE and SEE is at least 40 out of 100 marks.

Continuous Inte	ernal Assessments	Marks 100%	Assessment
		(Weightage 50%)	
Theory	Three Internals (Best of	40%	Course Instructor
Component	Two)		
	Quiz (One Quiz or AAT)	10%	

Laboratory Component		50%	
Component			
Semester En	d Examination (Written	Marks 100	
Examination for Three Hours)		(Weightage 50%)	

Component	onent Theory (50%) Pra		Practical (50%)	Practical (50%)		
	Test	Test	Learning	Records &	Lab	Marks
	1	2	Activity-	Performances	Test	
			1			
Max. Marks	20	20	10	30	20	100
Reduced CIE	10	10	5	15	10	50

Continuous Comprehensive Assessments (CCA):

CCA will be conducted for a total of 5 marks. It is recommended to include a maximum of two learning activities aimed at enhancing the holistic development of students.

These activities should align with course objectives and promote higher-order thinking and application-based learning.

 Learning Activity 1: Case Studies Presentations related to implementation SDGs (5 Marks)

Rubrics for Lea each activity): (10 Marks)	arning Activity -1	(Based on the n	ature of learning :	activity, design the	rubrics for
	Superior	Good	Fair	Needs Improvement	Unacceptable
Understanding of Case (10 Marks) (PO 1)	Demonstrates deep understanding (10)	Good understanding (8)	Adequate understanding. (6)	Limited understanding (4)	No clear understanding. (0-2)

Suggested Learning Activities may include (but are not limited to):

- 1. Course Project
- 2. Case Study
- 3. Presentation Programming

- 4. Assignment Tool/Software Exploration
- 5. Literature Review
- 6. Open Book Test (preferably at RBL4 and RBL5 levels)
- 7. GATE-based Aptitude Test Assignment (at RBL3, RBL4, or RBL5 levels)
- 8. Any other relevant and innovative academic activity
- 9. Use of MOOCs and Online Platforms

Suggested Innovative Delivery Methods may include (but are not limited to):

- 1. Flipped Classroom
- 2. Problem-Based Learning (PBL)
- 3. Case-Based Teaching Simulation and
- 4. Virtual Labs Partial Delivery of course by Industry expert/ industrial visits
- 5. ICT-Enabled Teaching
- 6. Role Play

Course Title: Elements of	Semester	II	
Course Code	25ME2PSEME	CIE Marks	50
Teaching Hours/Week (L:T:P: S)	3-0-1	SEE Marks	100
Total Hours of Pedagogy		Total Marks	100
Credits	04	Exam Hours	3
Examination type (SEE)		•	

Course Outcomes (Course Skill Set)

- CO1: Describe and discuss fundamental principles of Mechanical Engineering as applied in the domains of machining, thermal, automotive and futuristic technologies such as non-conventional energy technology
- CO2: Differentiate and compare among various mechanical systems (such as energy, metal joining, IC engines etc.)
- **CO3:** Derive and determine parameters related to different type of mechanical systems
- **CO4:** Demonstrate skills in fabrication techniques and experimental analysis related to different domains in Mechanical Engineering

Module-1: 05 Hours

Introduction to Mechanical Engineering (Overview only):

Role of Mechanical Engineering in Industries and Society- Emerging Trends and Technologies in different sectors such as Energy, Manufacturing, Automotive, Aerospace, and Marine sectors and contribution to GDP (*Not for CIE/SEE*).

Energy Sources and Power Plants:

Classification of energy sources, Construction and working of Hydel power plant, Solar power plant (Helio-thermal process, flat and parabolic collectors), Wind power plant, Hydrogen as fuel and list of applications.

Hydraulic turbines

Classification of Hydraulic turbines, Principle and Operation of Pelton Wheel and Francis Turbine.

Module-2: 05 Hours

Metal Joining Processes:

Soldering, Brazing and Welding: Classification, definitions and principles of operation, Procedure followed in soldering, brazing and welding, Brief description of arc welding.

Steam Formation and Application:

Formation of steam and thermodynamic properties of steam (no numerical problems), Applications of steam in industries.

Refrigeration: Principle of refrigeration, Refrigeration Effect, Ton of Refrigeration, COP, Refrigerants and their desirable properties, Principles and Operation of Vapor Compression and Vapor Absorption Refrigeration (with block diagrams), Applications of Refrigeration

Module-3: 05 Hours

Fundamentals of IC Engines: Classification of Internal Combustion Engines, Working of 4-Stroke (petrol and diesel) engines, Applications of IC Engines, Numerical on Power and Mechanical efficiency calculations.

Insight into future mobility technology: Introduction to Electric and Hybrid Vehicles, Components of Electric and Hybrid Vehicles (block diagram only). Advantages and disadvantages of EVs and Hybrid vehicles. Drones, UAV, Types of UAV, fixed wing and multi-rotors, Applications

Module-4: 05 Hours

Power Transmission – Belt Drives:

Principle, working and application of flat and V-belt drives. Flat belt drives (Open and crossed), Simple numerical on flat belt drives involving velocity ratios (without the effect of belt thickness and slip).

Power Transmission – Gear Drives:

Types of gear, Gear Trains (simple and compound) and their application.

Introduction to Robotics:

Robot anatomy, Joints & links, common robot configurations, Applications of Robotics

Module-5: 05 Hours

Fundamentals of Machine Tools and Operations:

(Machine tool sketches are not included for CIE/SEE)

Working Principle of Lathe, Milling and Drilling machine tools, Lathe Operations: Turning, Facing, Taper Turning and Knurling.

Introduction to Modern Manufacturing Tools and Techniques:

CNC: Introduction, components of CNC, advantages and applications of CNC, Additive Manufacturing: Introduction, classification, steps involved.

Introduction to Mechatronics: Concept of open-loop and closed-loop control systems, Examples of Mechatronic systems

Suggested Learning Resources: (Textbook/Reference Book):

I. Textbooks:

- 1. Elements of Mechanical Engineering, K R Gopala Krishna, Subhash Publications, 2019
- 2. Elements of Mechanical Engineering, V. K. Manglik, PHI Learning, 2019

II. Reference books:

- 1. Textbook of Elements of Mechanical Engineering, S. Trymbaka Murthy, Medtech, 2019
- 2. Elements of Mechanical Engineering, Kestoor Praveen, Suggi Publishing, 2019
- 3. Thermal Management in Electronic Equipment, HCL Technologies, 2010
- 4. Fundamentals of Robotics: Analysis and Control, Robert J. Schilling, Pearson Education (US).

III. Web links and Video Lectures (e-Resources):

- 1. https://www.tlv.com/global/TI/steam-theory/principal-applications-for-steam.html
- 2. https://www.forbesmarshall.com/Knowledge/SteamPedia/About-Steam/Fundamental-Applications-of-Steam
- 3. https://rakhoh.com/en/applications-and-advantages-of-steam-in-manufacturing-and-process-industry/
- 4. <u>Videos | Makino (For Machine Tool Operation)</u>
- 5. Mechanisms and mechanical devices 4e.pdf (e-book- Mechanical Linkages)

List of Lab activities:

- 1. One model preparation using arc welding
- 2. Preparation of a sheet metal model
- 3. One model preparation using soldering
- 4. One model preparation involving bench-drilling & tapping
- 5. One lathe model involving facing, turning and knurling
- 6. Hands on experience on CNC wood router and Laser cutting machine
- 7. Performance study of Pelton wheel turbine
- 8. Performance study of 4 stroke petrol engine

Teaching-Learning Process (Innovative Delivery Methods):

- 1. Power Point presentation,
- 2. Chalk and talk are used for problem solving (in-general).
- 3. Students are encouraged to practice only line diagrams for exams.
- 4. Video demonstration or simulations
- 5. Laboratory demonstrations and practical experiments

Assessment Structure:

Component	Type of assessment	Max. Marks	Total	Reduced Marks	Total	Min. Marks required for eligibility	Total Marks
	Quiz/AAT				25	10	50
CIE – Theory	Test 1	40	80	25			
	Test 2	40					
	Test 3	40					
CIE – Lab	Record & Performance/ Lab Test	15	25		25		
	Experiential learning	10					
SEE	End Exam	10	00	50			50
		100					

Semester End Examination: (QP PATTERN)

Answer five full questions selecting one from each module. Two questions will be set from each

module.

COs and POs Mapping

COs	POs											
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	3						2					
CO2	3						2					
CO3	3											
CO4	2			3								